Department of Otolaryngology, Huaihe Hospital, Henan University, Kaifeng, China.
Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, China.
J Cell Mol Med. 2024 May;28(9):e18394. doi: 10.1111/jcmm.18394.
This study aims to enhance the prognosis prediction of Head and Neck Squamous Cell Carcinoma (HNSCC) by employing artificial intelligence (AI) to analyse CDKN2A gene expression from pathology images, directly correlating with patient outcomes. Our approach introduces a novel AI-driven pathomics framework, delineating a more precise relationship between CDKN2A expression and survival rates compared to previous studies. Utilizing 475 HNSCC cases from the TCGA database, we stratified patients into high-risk and low-risk groups based on CDKN2A expression thresholds. Through pathomics analysis of 271 cases with available slides, we extracted 465 distinctive features to construct a Gradient Boosting Machine (GBM) model. This model was then employed to compute Pathomics scores (PS), predicting CDKN2A expression levels with validation for accuracy and pathway association analysis. Our study demonstrates a significant correlation between higher CDKN2A expression and improved median overall survival (66.73 months for high expression vs. 42.97 months for low expression, p = 0.013), establishing CDKN2A's prognostic value. The pathomic model exhibited exceptional predictive accuracy (training AUC: 0.806; validation AUC: 0.710) and identified a strong link between higher Pathomics scores and cell cycle activation pathways. Validation through tissue microarray corroborated the predictive capacity of our model. Confirming CDKN2A as a crucial prognostic marker in HNSCC, this study advances the existing literature by implementing an AI-driven pathomics analysis for gene expression evaluation. This innovative methodology offers a cost-efficient and non-invasive alternative to traditional diagnostic procedures, potentially revolutionizing personalized medicine in oncology.
本研究旨在通过人工智能(AI)分析病理学图像中的 CDKN2A 基因表达,直接关联患者的预后情况,从而提高头颈部鳞状细胞癌(HNSCC)的预后预测能力。我们的方法引入了一种新颖的 AI 驱动的病理组学框架,与之前的研究相比,更精确地描绘了 CDKN2A 表达与生存率之间的关系。我们利用 TCGA 数据库中的 475 例 HNSCC 病例,根据 CDKN2A 表达阈值将患者分为高风险和低风险组。通过对 271 例有切片可用的病例进行病理组学分析,我们提取了 465 个独特特征来构建梯度提升机(GBM)模型。然后,我们使用该模型计算病理组学评分(PS),以验证其预测 CDKN2A 表达水平的准确性和通路关联分析。我们的研究表明,CDKN2A 表达较高与中位总生存期延长显著相关(高表达的中位总生存期为 66.73 个月,低表达的为 42.97 个月,p=0.013),证实了 CDKN2A 的预后价值。病理组学模型表现出优异的预测准确性(训练 AUC:0.806;验证 AUC:0.710),并确定了较高的病理组学评分与细胞周期激活途径之间的强烈关联。通过组织微阵列进行验证,证实了我们模型的预测能力。本研究确认 CDKN2A 是 HNSCC 中的一个重要预后标志物,通过实施 AI 驱动的病理组学分析来评估基因表达,从而推进了现有文献。这种创新方法提供了一种具有成本效益和非侵入性的替代传统诊断程序的方法,可能会彻底改变肿瘤学中的个性化医学。