Suppr超能文献

使用机器学习构建肿瘤组学模型预测甲状腺癌中 TNFRSF9 的表达和分子病理特征。

Prediction of TNFRSF9 expression and molecular pathological features in thyroid cancer using machine learning to construct Pathomics models.

机构信息

Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China.

出版信息

Endocrine. 2024 Oct;86(1):324-332. doi: 10.1007/s12020-024-03862-9. Epub 2024 May 16.

Abstract

BACKGROUND

The TNFRSF9 molecule is pivotal in thyroid carcinoma (THCA) development. This study utilizes Pathomics techniques to predict TNFRSF9 expression in THCA tissue and explore its molecular mechanisms.

METHODS

Transcriptome data, pathology images, and clinical information from the cancer genome atlas (TCGA) were analyzed. Image segmentation and feature extraction were performed using the OTSU's algorithm and pyradiomics package. The dataset was split for training and validation. Features were selected using maximum relevance minimum redundancy recursive feature elimination (mRMR_RFE) and modeling conducted with the gradient boosting machine (GBM) algorithm. Model evaluation included receiver operating characteristic curve (ROC) analysis. The Pathomics model output a probabilistic pathomics score (PS) for gene expression prediction, with its prognostic value assessed in TNFRSF9 expression groups. Subsequent analysis involved gene set variation analysis (GSVA), immune gene expression, cell abundance, immunotherapy susceptibility, and gene mutation analysis.

RESULTS

High TNFRSF9 expression correlated with worsened progression-free interval (PFI) and acted as an independent risk factor [hazard ratio (HR) = 2.178, 95% confidence interval (CI) 1.045-4.538, P = 0.038]. Nine pathohistological features were identified. The GBM Pathomics model demonstrated good prediction efficacy [area under the curve (AUC) 0.819 and 0.769] and clinical benefits. High PS was a PFI risk factor (HR = 2.156, 95% CI 1.047-4.440, P = 0.037). Patients with high PS potentially exhibited enriched pathways, increased TIGIT gene expression, Tregs infiltration (P < 0.0001), and higher rates of gene mutations (BRAF, TTN, TG).

CONCLUSIONS

The GBM Pathomics model constructed based on the pathohistological features of H&E-stained sections well predicted the expression level of TNFRSF9 molecules in THCA.

摘要

背景

TNFRSF9 分子在甲状腺癌(THCA)的发展中起着关键作用。本研究利用 Pathomics 技术预测 THCA 组织中 TNFRSF9 的表达,并探讨其分子机制。

方法

分析癌症基因组图谱(TCGA)中的转录组数据、病理图像和临床信息。使用 OTSU 算法和 pyradiomics 包进行图像分割和特征提取。数据集分为训练集和验证集。使用最大相关性最小冗余递归特征消除(mRMR_RFE)选择特征,并使用梯度提升机(GBM)算法进行建模。模型评估包括接收者操作特征曲线(ROC)分析。Pathomics 模型输出基因表达预测的概率病理评分(PS),并评估 TNFRSF9 表达组的预后价值。随后的分析包括基因集变异分析(GSVA)、免疫基因表达、细胞丰度、免疫治疗敏感性和基因突变分析。

结果

高 TNFRSF9 表达与无进展生存期(PFI)恶化相关,并且是独立的危险因素[危险比(HR)=2.178,95%置信区间(CI)1.045-4.538,P=0.038]。确定了 9 种组织病理学特征。GBM Pathomics 模型显示出良好的预测效果[曲线下面积(AUC)0.819 和 0.769]和临床获益。高 PS 是 PFI 的危险因素(HR=2.156,95%CI 1.047-4.440,P=0.037)。高 PS 患者可能表现出丰富的途径、TIGIT 基因表达增加、Tregs 浸润(P<0.0001)和更高的基因突变率(BRAF、TTN、TG)。

结论

基于 H&E 染色切片的组织病理学特征构建的 GBM Pathomics 模型能够很好地预测 THCA 中 TNFRSF9 分子的表达水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验