Suppr超能文献

基于模型的精神分裂症失配反应研究方法。

Model-Based Approaches to Investigating Mismatch Responses in Schizophrenia.

作者信息

Gütlin Dirk C, McDermott Hannah H, Grundei Miro, Auksztulewicz Ryszard

机构信息

Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.

出版信息

Clin EEG Neurosci. 2025 Jan;56(1):8-21. doi: 10.1177/15500594241253910. Epub 2024 May 15.

Abstract

Alterations of mismatch responses (ie, neural activity evoked by unexpected stimuli) are often considered a potential biomarker of schizophrenia. Going beyond establishing the type of observed alterations found in diagnosed patients and related cohorts, computational methods can yield valuable insights into the underlying disruptions of neural mechanisms and cognitive function. Here, we adopt a typology of model-based approaches from computational cognitive neuroscience, providing an overview of the study of mismatch responses and their alterations in schizophrenia from four complementary perspectives: (a) connectivity models, (b) decoding models, (c) neural network models, and (d) cognitive models. Connectivity models aim at inferring the effective connectivity patterns between brain regions that may underlie mismatch responses measured at the sensor level. Decoding models use multivariate spatiotemporal mismatch response patterns to infer the type of sensory violations or to classify participants based on their diagnosis. Neural network models such as deep convolutional neural networks can be used for improved classification performance as well as for a systematic study of various aspects of empirical data. Finally, cognitive models quantify mismatch responses in terms of signaling and updating perceptual predictions over time. In addition to describing the available methodology and reviewing the results of recent computational psychiatry studies, we offer suggestions for future work applying model-based techniques to advance the study of mismatch responses in schizophrenia.

摘要

错配反应(即由意外刺激引发的神经活动)的改变通常被认为是精神分裂症的一种潜在生物标志物。除了确定在已确诊患者及相关队列中观察到的改变类型外,计算方法还能对神经机制和认知功能的潜在破坏产生有价值的见解。在此,我们采用计算认知神经科学中基于模型的方法类型学,从四个互补的角度概述错配反应及其在精神分裂症中的改变的研究:(a)连接模型,(b)解码模型,(c)神经网络模型,以及(d)认知模型。连接模型旨在推断可能是传感器水平测量的错配反应基础的脑区之间的有效连接模式。解码模型使用多变量时空错配反应模式来推断感觉违规的类型或根据参与者的诊断对其进行分类。诸如深度卷积神经网络之类的神经网络模型可用于提高分类性能以及对实证数据的各个方面进行系统研究。最后,认知模型根据随时间发出信号和更新感知预测来量化错配反应。除了描述可用的方法并回顾近期计算精神病学研究的结果外,我们还为未来应用基于模型的技术推进精神分裂症错配反应研究的工作提供建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1895/11664892/88de79c52a9c/10.1177_15500594241253910-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验