Eggeling Andrea, Ngendahimana Thacien, Jeschke Gunnar, Eaton Gareth R, Eaton Sandra S
ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA.
Phys Chem Chem Phys. 2024 May 29;26(21):15240-15254. doi: 10.1039/d4cp01212g.
Tunneling of methyl rotors coupled to an electron spin causes magnetic field independent electron spin echo envelope modulation (ESEEM) at low temperatures. For nitroxides containing alkyl substituents, we observe this effect as a contribution at the beginning of the Hahn echo decay signal occurring on a faster time scale than the matrix-induced decoherence. The tunneling ESEEM contribution includes information on the local environment of the methyl rotors, which manifests as a distribution of rotation barriers () when measuring the paramagnetic species in a glassy matrix. Here, we investigate the differences in tunneling behaviour of geminal methyl and ethyl group rotors in nitroxides while exploring different levels of theory in our previously introduced methyl quantum rotor (MQR) model. Moreover, we extend the MQR model to analyze the tunneling ESEEM originating from two different rotor types coupled to the same electron spin. We find that ethyl groups in nitroxides give rise to stronger tunneling ESEEM contributions than methyl groups because the difference between hyperfine couplings of their methyl protons better matches the tunneling frequency. The methyl rotors of both ethyl and propyl groups exhibit distributions at lower rotation barriers compared to geminal methyl groups. This is in good agreement with density functional theory (DFT) calculations of their rotation barriers and showcases that conformational flexibility impacts the hindrance of rotation. Using Monte-Carlo based fitting in combination with an identifiability analysis of the MQR model parameter space, we extract rotation barrier distributions for the individual rotor types in mixed-rotor nitroxides as well as identify which rotors dominate the observed tunneling contribution in the Hahn echo decay signal.
与电子自旋耦合的甲基转子隧穿在低温下会导致与磁场无关的电子自旋回波包络调制(ESEEM)。对于含有烷基取代基的氮氧化物,我们在比基质诱导退相干更快的时间尺度上,在哈恩回波衰减信号开始时观察到这种效应。隧穿ESEEM贡献包含甲基转子局部环境的信息,在玻璃基质中测量顺磁物种时,这表现为旋转势垒()的分布。在这里,我们研究了氮氧化物中偕甲基和乙基转子隧穿行为的差异,同时在我们之前引入的甲基量子转子(MQR)模型中探索不同的理论水平。此外,我们扩展了MQR模型,以分析源自与同一电子自旋耦合的两种不同转子类型的隧穿ESEEM。我们发现,氮氧化物中的乙基比甲基产生更强的隧穿ESEEM贡献,因为它们甲基质子的超精细耦合差异与隧穿频率更匹配。与偕甲基相比,乙基和丙基的甲基转子在较低的旋转势垒处都表现出分布。这与它们旋转势垒的密度泛函理论(DFT)计算结果非常吻合,并表明构象灵活性会影响旋转的阻碍。通过基于蒙特卡罗的拟合结合MQR模型参数空间的可识别性分析,我们提取了混合转子氮氧化物中各个转子类型的旋转势垒分布,并确定了在哈恩回波衰减信号中观察到的隧穿贡献中占主导地位的转子。