Suppr超能文献

部分氘化玻璃基质中电子自旋退相干的机制。

Mechanism of Electron Spin Decoherence in a Partially Deuterated Glassy Matrix.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Phys Chem Lett. 2022 Jun 23;13(24):5474-5479. doi: 10.1021/acs.jpclett.2c00939. Epub 2022 Jun 10.

Abstract

Long electron spin coherence lifetimes are essential for applications in quantum information science and electron paramagnetic resonance, for instance, for nanoscale distance measurements in biomolecular systems using double electron-electron resonance. We experimentally investigate the decoherence dynamics under the Hahn echo sequence of the organic radical -TEMPO in a variably deuterated frozen water:glycerol matrix. The coherence time (phase memory time) scales with proton concentration as [H]. For selectively deuterated matrices, decoherence is accelerated in the presence of proton clustering, that is, substantial short-range density in the proton-proton radial distribution functions (<3 Å). Simulations using molecular dynamics and many-body spin quantum dynamics show excellent agreement with experiment and show that geminal proton pairs such as CH and OH groups are major decoherence drivers. This provides a predictive tool for designing molecular systems with long electron spin coherence times.

摘要

长电子自旋相干寿命对于量子信息科学和电子顺磁共振等应用至关重要,例如,在使用双电子电子共振的生物分子系统中进行纳米级距离测量。我们在可变氘化冷冻水:甘油基质中通过实验研究了有机自由基-TEMPO 的哈恩回波序列下的退相干动力学。相干时间(相位记忆时间)与质子浓度呈比例关系为[H]。对于选择性氘化的基质,在质子聚集的情况下退相干会加速,即质子-质子径向分布函数中的短程密度很大(<3 Å)。使用分子动力学和多体自旋量子动力学的模拟与实验结果非常吻合,并表明类似 CH 和 OH 基团的双质子对是主要的退相干驱动因素。这为设计具有长电子自旋相干时间的分子系统提供了一种预测工具。

相似文献

1
Mechanism of Electron Spin Decoherence in a Partially Deuterated Glassy Matrix.
J Phys Chem Lett. 2022 Jun 23;13(24):5474-5479. doi: 10.1021/acs.jpclett.2c00939. Epub 2022 Jun 10.
2
Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals.
J Phys Chem Lett. 2020 May 7;11(9):3396-3400. doi: 10.1021/acs.jpclett.0c00768. Epub 2020 Apr 17.
3
Matrix material structure dependence of the embedded electron spin decoherence.
J Chem Phys. 2019 Apr 28;150(16):164124. doi: 10.1063/1.5090215.
4
A quantum many body model for the embedded electron spin decoherence in organic solids.
J Chem Phys. 2019 Oct 28;151(16):164124. doi: 10.1063/1.5124561.
5
filtering by H-methyl labeling in a deuterated protein for pulsed double electron-electron resonance EPR.
Chem Commun (Camb). 2020 Sep 17;56(74):10890-10893. doi: 10.1039/d0cc04369a.
6
Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes.
J Am Chem Soc. 2014 May 28;136(21):7623-6. doi: 10.1021/ja5037397. Epub 2014 May 16.
9
Coherences of Photoinduced Electron Spin Qubit Pair States in Photosystem I.
J Phys Chem B. 2023 Nov 30;127(47):10108-10117. doi: 10.1021/acs.jpcb.3c06658. Epub 2023 Nov 19.

引用本文的文献

1
Electron-spin decoherence in trityl radicals in the absence and presence of microwave irradiation.
Magn Reson (Gott). 2025 Jan 22;6(1):15-32. doi: 10.5194/mr-6-15-2025. eCollection 2025.
2
ih-RIDME: a pulse EPR experiment to probe the heterogeneous nuclear environment.
Magn Reson (Gott). 2025 Mar 10;6(1):93-112. doi: 10.5194/mr-6-93-2025. eCollection 2025.
3
Tracking life and death of carbon nitride supports in platinum-catalyzed vinyl chloride synthesis.
Nat Commun. 2025 May 24;16(1):4842. doi: 10.1038/s41467-025-60169-7.
4
Temperature-Dependent Rotation of Protonated Methyl Groups in Otherwise Deuterated Proteins Modulates DEER Distance Distributions.
Appl Magn Reson. 2025;56(1-2):91-102. doi: 10.1007/s00723-024-01720-5. Epub 2024 Oct 3.
5
RIDME Spectroscopy: New Topics Beyond the Determination of Electron Spin-Spin Distances.
J Phys Chem Lett. 2025 Jan 30;16(4):1024-1037. doi: 10.1021/acs.jpclett.4c02667. Epub 2025 Jan 22.
8
Exploring tunneling ESEEM beyond methyl groups in nitroxides at low temperatures.
Phys Chem Chem Phys. 2024 May 29;26(21):15240-15254. doi: 10.1039/d4cp01212g.
9
Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields.
J Phys Chem Lett. 2023 Nov 30;14(47):10578-10584. doi: 10.1021/acs.jpclett.3c01847. Epub 2023 Nov 17.
10
Quantifying methyl tunneling induced (de)coherence of nitroxides in glassy -terphenyl at low temperatures.
Phys Chem Chem Phys. 2023 Apr 26;25(16):11145-11157. doi: 10.1039/d3cp01299a.

本文引用的文献

1
The decay of the refocused Hahn echo in double electron-electron resonance (DEER) experiments.
Magn Reson (Gott). 2021 Apr 16;2(1):161-173. doi: 10.5194/mr-2-161-2021. eCollection 2021.
2
Generalized scaling of spin qubit coherence in over 12,000 host materials.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2121808119. doi: 10.1073/pnas.2121808119. Epub 2022 Apr 6.
3
Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals.
J Phys Chem Lett. 2020 May 7;11(9):3396-3400. doi: 10.1021/acs.jpclett.0c00768. Epub 2020 Apr 17.
4
A quantum many body model for the embedded electron spin decoherence in organic solids.
J Chem Phys. 2019 Oct 28;151(16):164124. doi: 10.1063/1.5124561.
5
Matrix material structure dependence of the embedded electron spin decoherence.
J Chem Phys. 2019 Apr 28;150(16):164124. doi: 10.1063/1.5090215.
8
Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit.
ACS Cent Sci. 2015 Dec 23;1(9):488-92. doi: 10.1021/acscentsci.5b00338. Epub 2015 Dec 2.
10
Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes.
J Am Chem Soc. 2014 May 28;136(21):7623-6. doi: 10.1021/ja5037397. Epub 2014 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验