Suppr超能文献

绿豆叶片和发育种子的转录组学及淀粉生物合成分析为淀粉组成和种子品质的基因工程提供了基础。

Transcriptomics and starch biosynthesis analysis in leaves and developing seeds of mung bean provide a basis for genetic engineering of starch composition and seed quality.

作者信息

Umnajkitikorn Kamolchanok, Boonchuen Pakpoom, Senavongse Rattanavalee, Tongta Sunanta, Tian Yu, Hu Yaqi, Petersen Bent Larsen, Blennow Andreas

机构信息

School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.

School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.

出版信息

Front Plant Sci. 2024 May 1;15:1332150. doi: 10.3389/fpls.2024.1332150. eCollection 2024.

Abstract

Mung bean starch is distinguished by its exceptional high amylose content and regulation of starch biosynthesis in leaves and storage tissues, such as seeds, share considerable similarities. Genetic engineering of starch composition and content, requires detailed knowledge of starch biosynthetic gene expression and enzymatic regulation. In this study we applied detailed transcriptomic analyses to unravel the global differential gene expression patterns in mung bean leaves and in seeds during various stages of development. The objective was to identify candidate genes and regulatory mechanisms that may enable generation of desirable seed qualities through the use of genetic engineering. Notable differences in gene expression, in particular low expression of the Protein Targeting to Starch (PTST), starch synthase (SS) 3, and starch branching enzyme1 (SBE1) encoding genes in developing seeds as compared to leaves were evident. These differences were related to starch molecular structures and granule morphologies. Specifically, the starch molecular size distribution at different stages of seed development correlated with the starch biosynthesis gene expression of the SBE1, SS1, granule-bound starch synthases (GBSS) and isoamylase 1 (ISA1) encoding genes. Furthermore, putative hormonal and redox controlled regulation were observed, which may be explained by abscisic acid (ABA) and indole-3-acetic acid (IAA) induced signal transduction, and redox regulation of ferredoxins and thioredoxins, respectively. The morphology of starch granules in leaves and developing seeds were clearly distinguishable and could be correlated to differential expression of SS1. Here, we present a first comprehensive transcriptomic dataset of developing mung bean seeds, and combined these findings may enable generation of genetic engineering strategies of for example starch biosynthetic genes for increasing starch levels in seeds and constitute a valuable toolkit for improving mung bean seed quality.

摘要

绿豆淀粉的特点是其直链淀粉含量极高,并且叶片和储存组织(如种子)中淀粉生物合成的调控有相当多的相似之处。淀粉组成和含量的基因工程需要详细了解淀粉生物合成基因的表达和酶调控。在本研究中,我们应用详细的转录组分析来揭示绿豆叶片和种子在不同发育阶段的全局差异基因表达模式。目的是确定候选基因和调控机制,这些机制可能通过基因工程实现所需种子品质的产生。基因表达存在显著差异,特别是与叶片相比,发育中的种子中编码淀粉靶向蛋白(PTST)、淀粉合酶(SS)3和淀粉分支酶1(SBE1)的基因表达较低。这些差异与淀粉分子结构和颗粒形态有关。具体而言,种子发育不同阶段的淀粉分子大小分布与SBE1、SS1、颗粒结合淀粉合酶(GBSS)和异淀粉酶1(ISA1)编码基因的淀粉生物合成基因表达相关。此外,观察到了假定的激素和氧化还原控制的调控,这可能分别由脱落酸(ABA)和吲哚 - 3 - 乙酸(IAA)诱导的信号转导以及铁氧还蛋白和硫氧还蛋白的氧化还原调控来解释。叶片和发育中种子的淀粉颗粒形态明显不同,并且可能与SS1的差异表达相关。在这里,我们展示了发育中的绿豆种子的首个全面转录组数据集,综合这些发现可能有助于生成例如用于提高种子淀粉水平的淀粉生物合成基因的基因工程策略,并构成改善绿豆种子品质的有价值工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ac/11094274/2e2ebe89e861/fpls-15-1332150-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验