Yasumizu Yoshiaki, Hagiwara Masaki, Umezu Yuto, Fuji Hiroaki, Iwaisako Keiko, Asagiri Masataka, Uemoto Shinji, Nakamura Yamami, Thul Sophia, Ueyama Azumi, Yokoi Kazunori, Tanemura Atsushi, Nose Yohei, Saito Takuro, Wada Hisashi, Kakuda Mamoru, Kohara Masaharu, Nojima Satoshi, Morii Eiichi, Doki Yuichiro, Sakaguchi Shimon, Ohkura Naganari
Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
NAR Cancer. 2024 May 15;6(2):zcae022. doi: 10.1093/narcan/zcae022. eCollection 2024 Jun.
DNA methylation is a pivotal epigenetic modification that defines cellular identity. While cell deconvolution utilizing this information is considered useful for clinical practice, current methods for deconvolution are limited in their accuracy and resolution. In this study, we collected DNA methylation data from 945 human samples derived from various tissues and tumor-infiltrating immune cells and trained a neural network model with them. The model, termed MEnet, predicted abundance of cell population together with the detailed immune cell status from bulk DNA methylation data, and showed consistency to those of flow cytometry and histochemistry. MEnet was superior to the existing methods in the accuracy, speed, and detectable cell diversity, and could be applicable for peripheral blood, tumors, cell-free DNA, and formalin-fixed paraffin-embedded sections. Furthermore, by applying MEnet to 72 intrahepatic cholangiocarcinoma samples, we identified immune cell profiles associated with cancer prognosis. We believe that cell deconvolution by MEnet has the potential for use in clinical settings.
DNA甲基化是一种关键的表观遗传修饰,它决定了细胞身份。虽然利用这些信息进行细胞反卷积被认为对临床实践有用,但目前的反卷积方法在准确性和分辨率方面存在局限性。在本研究中,我们收集了来自各种组织和肿瘤浸润免疫细胞的945个人类样本的DNA甲基化数据,并用它们训练了一个神经网络模型。该模型称为MEnet,可从大量DNA甲基化数据中预测细胞群体丰度以及详细的免疫细胞状态,并且与流式细胞术和组织化学的结果一致。MEnet在准确性、速度和可检测的细胞多样性方面优于现有方法,可应用于外周血、肿瘤、游离DNA和福尔马林固定石蜡包埋切片。此外,通过将MEnet应用于72例肝内胆管癌样本,我们确定了与癌症预后相关的免疫细胞谱。我们相信,MEnet进行的细胞反卷积具有在临床环境中使用的潜力。