Department of Applied Physics, Stanford University, Stanford, CA, United States.
Department of Pathology, Stanford University, Stanford, CA, United States.
Front Immunol. 2021 Oct 29;12:765923. doi: 10.3389/fimmu.2021.765923. eCollection 2021.
Cellular composition and structural organization of cells in the tissue determine effective antitumor response and can predict patient outcome and therapy response. Here we present Seg-SOM, a method for dimensionality reduction of cell morphology in H&E-stained tissue images. Seg-SOM resolves cellular tissue heterogeneity and reveals complex tissue architecture. We leverage a self-organizing map (SOM) artificial neural network to group cells based on morphological features like shape and size. Seg-SOM allows for cell segmentation, systematic classification, and cell labeling. We apply the Seg-SOM to a dataset of breast cancer progression images and find that clustering of SOM classes reveals groups of cells corresponding to fibroblasts, epithelial cells, and lymphocytes. We show that labeling the Lymphocyte SOM class on the breast tissue images accurately estimates lymphocytic infiltration. We further demonstrate how to use Seq-SOM in combination with non-negative matrix factorization to statistically describe the interaction of cell subtypes and use the interaction information as highly interpretable features for a histological classifier. Our work provides a framework for use of SOM in human pathology to resolve cellular composition of complex human tissues. We provide a python implementation and an easy-to-use docker deployment, enabling researchers to effortlessly featurize digitalized H&E-stained tissue.
组织中的细胞组成和结构组织决定了有效的抗肿瘤反应,并可预测患者的预后和治疗反应。在这里,我们提出了 Seg-SOM,这是一种用于 H&E 染色组织图像中细胞形态学降维的方法。Seg-SOM 解决了细胞组织异质性并揭示了复杂的组织结构。我们利用自组织映射(SOM)人工神经网络根据形状和大小等形态特征对细胞进行分组。Seg-SOM 允许进行细胞分割、系统分类和细胞标记。我们将 Seg-SOM 应用于乳腺癌进展图像数据集,发现 SOM 类别的聚类揭示了与成纤维细胞、上皮细胞和淋巴细胞相对应的细胞群。我们表明,在乳腺组织图像上标记淋巴细胞 SOM 类可以准确估计淋巴细胞浸润。我们进一步展示了如何结合非负矩阵分解将 Seq-SOM 用于统计描述细胞亚型的相互作用,并将相互作用信息用作组织学分类器的高度可解释特征。我们的工作为 SOM 在人类病理学中的应用提供了一个框架,以解决复杂的人类组织中的细胞组成问题。我们提供了一个 Python 实现和一个易于使用的 Docker 部署,使研究人员能够轻松地对数字化 H&E 染色组织进行特征化。