Suppr超能文献

HiTIMED:利用肿瘤类型特异性 DNA 甲基化数据进行肿瘤免疫微环境的分层肿瘤表观遗传去卷积,以实现肿瘤微环境中细胞类型的精确解析。

HiTIMED: hierarchical tumor immune microenvironment epigenetic deconvolution for accurate cell type resolution in the tumor microenvironment using tumor-type-specific DNA methylation data.

机构信息

Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.

Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.

出版信息

J Transl Med. 2022 Nov 8;20(1):516. doi: 10.1186/s12967-022-03736-6.

Abstract

BACKGROUND

Cellular compositions of solid tumor microenvironments are heterogeneous, varying across patients and tumor types. High-resolution profiling of the tumor microenvironment cell composition is crucial to understanding its biological and clinical implications. Previously, tumor microenvironment gene expression and DNA methylation-based deconvolution approaches have been shown to deconvolve major cell types. However, existing methods lack accuracy and specificity to tumor type and include limited identification of individual cell types.

RESULTS

We employed a novel tumor-type-specific hierarchical model using DNA methylation data to deconvolve the tumor microenvironment with high resolution, accuracy, and specificity. The deconvolution algorithm is named HiTIMED. Seventeen cell types from three major tumor microenvironment components can be profiled (tumor, immune, angiogenic) by HiTIMED, and it provides tumor-type-specific models for twenty carcinoma types. We demonstrate the prognostic significance of cell types that other tumor microenvironment deconvolution methods do not capture.

CONCLUSION

We developed HiTIMED, a DNA methylation-based algorithm, to estimate cell proportions in the tumor microenvironment with high resolution and accuracy. HiTIMED deconvolution is amenable to archival biospecimens providing high-resolution profiles enabling to study of clinical and biological implications of variation and composition of the tumor microenvironment.

摘要

背景

实体瘤微环境的细胞组成具有异质性,在患者和肿瘤类型之间存在差异。对肿瘤微环境细胞组成进行高分辨率分析对于理解其生物学和临床意义至关重要。先前的研究表明,基于肿瘤微环境基因表达和 DNA 甲基化的去卷积方法可用于去卷积主要细胞类型。然而,现有的方法在肿瘤类型方面缺乏准确性和特异性,并且对个别细胞类型的识别有限。

结果

我们使用基于 DNA 甲基化数据的新型肿瘤特异性层次模型,以高分辨率、准确性和特异性对肿瘤微环境进行去卷积。该去卷积算法名为 HiTIMED。HiTIMED 可以对三个主要肿瘤微环境成分(肿瘤、免疫、血管生成)中的 17 种细胞类型进行分析,并为 20 种癌型提供肿瘤特异性模型。我们证明了其他肿瘤微环境去卷积方法无法捕获的细胞类型的预后意义。

结论

我们开发了 HiTIMED,这是一种基于 DNA 甲基化的算法,可用于以高分辨率和准确性估计肿瘤微环境中的细胞比例。HiTIMED 去卷积适用于存档生物样本,提供高分辨率谱图,可用于研究肿瘤微环境的变异性和组成的临床和生物学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be4d/9644569/6ba04a84e03f/12967_2022_3736_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验