Guerrero-Ruiz Federico, Otaegi Itziar, Verde-Sesto Ester, Bonardd Sebastian, Maiz Jon
Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain.
POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
ACS Appl Polym Mater. 2024 Apr 27;6(9):5473-5484. doi: 10.1021/acsapm.4c00681. eCollection 2024 May 10.
Here, we have explored covalent adaptable networks (CANs) comprising poly(thiourethane)-based systems (PTUs). The PTUs were synthesized through the combination of thiol and isocyanate monomers in stoichiometric proportions, in the presence of dibutyltin dilaurate (DBTDL) as catalyst. Dynamic mechanical analysis (DMA) provided detailed insight into the vitrimeric behavior. Through these investigations, we evaluated the viscoelastic, thermomechanical, and vitrimeric properties. Additionally, broadband dielectric spectroscopy (BDS) revealed the various relaxation processes inherent in such vitrimer-like materials. We methodically examined the evolution of each relaxation in every prepared sample to comprehend the operational mechanisms in these vitrimer-like systems. Our findings underscore that depending on the PTU formulation, the glass transition temperature () and the topology freezing transition temperature () can be effectively distinguished and studied. Considering the high dipole moment of the dynamic bonds present in these systems, there is potential for utilizing them as dielectric materials working under the concept of dipolar glass polymers. Furthermore, the reversibility exhibited by their inner chemical structures positions them as promising candidates for active layers in capacitor devices, particularly for energy-related applications, with the ability to be recyclable while maintaining almost invariant both their mechanical and dielectric properties, thus promoting the extension of the lifespan of electronic devices.
在此,我们探索了由基于聚(硫脲)的体系(PTU)组成的共价自适应网络(CAN)。PTU是通过硫醇和异氰酸酯单体按化学计量比例在二月桂酸二丁基锡(DBTDL)作为催化剂的存在下合成的。动态力学分析(DMA)提供了对玻璃态行为的详细洞察。通过这些研究,我们评估了粘弹性、热机械和玻璃态性质。此外,宽带介电谱(BDS)揭示了此类类玻璃态材料固有的各种弛豫过程。我们有条不紊地检查了每个制备样品中每种弛豫的演变,以理解这些类玻璃态体系的运行机制。我们的研究结果强调,根据PTU配方,可以有效地区分和研究玻璃化转变温度()和拓扑冻结转变温度()。考虑到这些体系中存在的动态键的高偶极矩,有潜力将它们用作基于偶极玻璃聚合物概念工作的介电材料。此外,它们内部化学结构所表现出的可逆性使其成为电容器器件有源层的有前途的候选材料,特别是对于与能量相关的应用,能够在保持其机械和介电性能几乎不变的同时进行回收利用,从而延长电子设备的使用寿命。