Szamosvölgyi Ákos, Pitó Ádám, Efremova Anastasiia, Baán Kornélia, Kutus Bence, Suresh Mutyala, Sápi András, Szenti Imre, Kiss János, Kolonits Tamás, Fogarassy Zsolt, Pécz Béla, Kukovecz Ákos, Kónya Zoltán
Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary.
ACS Appl Nano Mater. 2024 Apr 24;7(9):9968-9977. doi: 10.1021/acsanm.4c00111. eCollection 2024 May 10.
Different Co contents were used to tune bimetallic Pt-Co nanoparticles with a diameter of 8 nm, resulting in Pt:Co ratios of 3.54, 1.51, and 0.96. These nanoparticles were then applied to the MCF-17 mesoporous silica support. The synthesized materials were characterized with HR-TEM, HAADF-TEM, EDX, XRD, BET, ICP-MS, DRIFTS, and XPS techniques. The catalysts were tested in a thermally induced reverse water-gas shift reaction (CO:H = 1:4) at atmospheric pressure in the 200-700 °C temperature range. All bimetallic Pt-Co particles outperformed the pure Pt benchmark catalyst. The nanoparticles with a Pt:Co ratio of 1.51 exhibited 2.6 times higher activity and increased CO selectivity by 4% at 500 °C. Experiments proved that the electron accumulation and alloying effect on the Pt-Co particles are stronger with higher Co ratios. The production of CO followed the formate reaction pathway on all catalysts due to the face-centered-cubic structure, which is similar to the Pt benchmark. It is concluded that the enhanced properties of Co culminate at a Pt:Co ratio of 1.51 because decreasing the ratio to 0.96 results in lower activity despite having more Co atoms available for the electronic interaction, resulting in the lack of electron-rich Pt sites.
采用不同的钴含量来调控直径为8 nm的双金属铂 - 钴纳米颗粒,从而得到铂与钴的比例分别为3.54、1.51和0.96。然后将这些纳米颗粒应用于MCF - 17介孔二氧化硅载体上。采用高分辨透射电子显微镜(HR - TEM)、高角度环形暗场扫描透射电子显微镜(HAADF - TEM)、能量散射X射线谱(EDX)、X射线衍射(XRD)、比表面积及孔径分析仪(BET)、电感耦合等离子体质谱(ICP - MS)、漫反射红外傅里叶变换光谱(DRIFTS)和X射线光电子能谱(XPS)技术对合成材料进行表征。在200 - 700 °C温度范围内,于大气压下对这些催化剂进行热诱导逆水煤气变换反应(CO:H = 1:4)测试。所有双金属铂 - 钴颗粒的性能均优于纯铂基准催化剂。在500 °C时,铂与钴比例为1.51的纳米颗粒活性高出2.6倍,一氧化碳选择性提高了4%。实验证明,钴比例越高,铂 - 钴颗粒上的电子积累和合金化效应越强。由于面心立方结构,所有催化剂上一氧化碳的生成均遵循甲酸反应途径,这与铂基准催化剂类似。得出结论,钴的增强性能在铂与钴比例为1.51时达到顶点,因为将比例降至0.96时,尽管有更多的钴原子可用于电子相互作用,但活性却降低了,这是由于缺乏富电子的铂位点所致。