Suppr超能文献

利用高维神经网络势探索氧化铈纳米团簇的稳定结构。

Exploring the stable structures of cerium oxide nanoclusters using high-dimensional neural network potential.

作者信息

Cai Huabing, Ren Qinghua, Gao Yi

机构信息

Department of Chemistry, Shanghai University 99 Shangda Road Shanghai 200444 China

Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China.

出版信息

Nanoscale Adv. 2024 Apr 3;6(10):2623-2628. doi: 10.1039/d3na01119d. eCollection 2024 May 14.

Abstract

Cerium clusters have been extensively applied in industry owing to their extraordinary properties for oxygen storage and redox catalytic activities. However, their atomically precise structures have not been studied because of the lack of a reliable method to efficiently sample their complex structures. Herein, we combined a neural network algorithm with density functional theory calculations to establish a high-dimensional potential to search for the global minimums of cerium oxide clusters. Using CeO as well as its reduced state CeO and oxidized state CeO with ultra-small dimensions of ∼1.0 nm as examples, we found that these three clusters adopt pyramid-like structures with the lowest energies, which was obtained by exploring 100 000 configurations in large feasible spaces. Further the neural network potential-enhanced molecular dynamics calculations indicated that these cluster structures are stable at high temperature. The electronic structure analysis suggested that these clusters are highly active and easily lose oxygen. This work demonstrated that neural network potentials can be useful for exploring the stable structures of metal oxide nanoclusters in practical applications.

摘要

铈簇因其在储氧和氧化还原催化活性方面的非凡特性而在工业中得到广泛应用。然而,由于缺乏一种可靠的方法来有效采样其复杂结构,它们的原子精确结构尚未得到研究。在此,我们将神经网络算法与密度泛函理论计算相结合,建立了一个高维势能来寻找氧化铈簇的全局最小值。以尺寸约为1.0纳米的超小尺寸的CeO及其还原态CeO和氧化态CeO为例,我们发现这三个簇采用能量最低的金字塔状结构,这是通过在大的可行空间中探索100000种构型获得的。此外,神经网络势能增强的分子动力学计算表明,这些簇结构在高温下是稳定的。电子结构分析表明,这些簇具有高活性且容易失去氧。这项工作表明,神经网络势能在实际应用中可用于探索金属氧化物纳米簇的稳定结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82c4/11093274/e11fa0655718/d3na01119d-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验