Suppr超能文献

金属暴露与慢性肾脏病发展之间因果关系的比较数学建模。

Comparative mathematical modeling of causal association between metal exposure and development of chronic kidney disease.

机构信息

Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China.

Department of Medical Engineering, Air Force Medical Center, PLA, Beijing, China.

出版信息

Front Endocrinol (Lausanne). 2024 May 1;15:1362085. doi: 10.3389/fendo.2024.1362085. eCollection 2024.

Abstract

BACKGROUND

Previous studies have identified several genetic and environmental risk factors for chronic kidney disease (CKD). However, little is known about the relationship between serum metals and CKD risk.

METHODS

We investigated associations between serum metals levels and CKD risk among 100 medical examiners and 443 CKD patients in the medical center of the First Hospital Affiliated to China Medical University. Serum metal concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). We analyzed factors influencing CKD, including abnormalities in Creatine and Cystatin C, using univariate and multiple analysis such as Lasso and Logistic regression. Metal levels among CKD patients at different stages were also explored. The study utilized machine learning and Bayesian Kernel Machine Regression (BKMR) to assess associations and predict CKD risk based on serum metals. A chained mediation model was applied to investigate how interventions with different heavy metals influence renal function indicators (creatinine and cystatin C) and their impact on diagnosing and treating renal impairment.

RESULTS

Serum potassium (K), sodium (Na), and calcium (Ca) showed positive trends with CKD, while selenium (Se) and molybdenum (Mo) showed negative trends. Metal mixtures had a significant negative effect on CKD when concentrations were all from 30 to 45 percentiles compared to the median, but the opposite was observed for the 55 to 60 percentiles. For example, a change in serum K concentration from the 25 to the 75 percentile was associated with a significant increase in CKD risk of 5.15(1.77,8.53), 13.62(8.91,18.33) and 31.81(14.03,49.58) when other metals were fixed at the 25, 50 and 75 percentiles, respectively.

CONCLUSIONS

Cumulative metal exposures, especially double-exposure to serum K and Se may impact CKD risk. Machine learning methods validated the external relevance of the metal factors. Our study highlights the importance of employing diverse methodologies to evaluate health effects of metal mixtures.

摘要

背景

先前的研究已经确定了几个与慢性肾脏病(CKD)相关的遗传和环境风险因素。然而,关于血清金属与 CKD 风险之间的关系知之甚少。

方法

我们在中国医科大学附属第一医院的 100 名体检者和 443 名 CKD 患者中研究了血清金属水平与 CKD 风险之间的关系。使用电感耦合等离子体质谱法(ICP-MS)测量血清金属浓度。我们分析了影响 CKD 的因素,包括肌酸和胱抑素 C 的异常,使用单变量和多变量分析,如套索和逻辑回归。还探讨了不同阶段 CKD 患者的金属水平。该研究利用机器学习和贝叶斯核机器回归(BKMR)评估基于血清金属的关联和预测 CKD 风险。应用链式中介模型研究不同重金属干预如何影响肾功能指标(肌酐和胱抑素 C)及其对诊断和治疗肾功能损害的影响。

结果

血清钾(K)、钠(Na)和钙(Ca)与 CKD 呈正相关趋势,而硒(Se)和钼(Mo)呈负相关趋势。与中位数相比,当所有金属浓度处于 30%至 45%百分位数时,金属混合物对 CKD 有显著的负效应,但当浓度处于 55%至 60%百分位数时,情况则相反。例如,当其他金属固定在 25%、50%和 75%百分位数时,血清 K 浓度从 25%百分位变化到 75%百分位,与 CKD 风险显著增加 5.15(1.77,8.53)、13.62(8.91,18.33)和 31.81(14.03,49.58)相关。

结论

累积金属暴露,尤其是血清 K 和 Se 的双重暴露,可能会影响 CKD 风险。机器学习方法验证了金属因素的外部相关性。我们的研究强调了采用多种方法评估金属混合物对健康影响的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e34c/11094205/395f5751b622/fendo-15-1362085-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验