Suppr超能文献

基于序列引导对巨大芽孢杆菌ω-转氨酶进行重新设计用于手性胺的不对称合成

Sequence-Guided Redesign of an Omega-Transaminase from Bacillus megaterium for the Asymmetric Synthesis of Chiral Amines.

作者信息

Xu Zhexian, Xu Jiaqi, Zhang Tao, Wang Ziyuan, Wu Jianping, Yang Lirong

机构信息

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.

出版信息

Chembiochem. 2024 Jul 15;25(14):e202400285. doi: 10.1002/cbic.202400285. Epub 2024 Jun 27.

Abstract

ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45 °C. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTA(2 M). Finally, the resting cells of 2 M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3 % and a conversion rate of 90 %, laying the foundation for its industrial production. Mutant 2 M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.

摘要

ω-转氨酶(ω-TAs)是一类具有吸引力的生物催化剂,可不对称地将酮催化转化为手性胺。然而,其较差的非天然催化活性和底物混杂性严重阻碍了它在工业生产中的广泛应用。蛋白质工程研究通常集中于重塑ω-TAs的底物结合口袋。然而,底物通道周围的热点区域以及口袋外部的远距离位点也可能影响其活性。在本研究中,选择了巨大芽孢杆菌的ω-TA(BmeTA)进行工程改造。通过多序列比对获得的通道突变Y164F与远距离突变A245T协同作用,使BmeTA的可溶性表达得到改善,比活性提高了3.7倍,在45℃下的半衰期延长了19.9倍。分子动力学模拟解释了BmeTA(2 M)催化活性提高、热稳定性增强和可溶性表达改善的机制。最后,将2 M的静息细胞用于生物催化过程。以90%的转化率获得了450 mM的S-甲氧基异丙胺(S-MOIPA),对映体过量值为97.3%,为其工业化生产奠定了基础。还发现突变体2 M在催化各种酮的转氨反应中更具优势。这些结果表明,远离活性中心的位点在ω-TAs的重新设计中也起着重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验