Department of Physics, University of California, San Diego, La Jolla, CA 92093.
Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2316799121. doi: 10.1073/pnas.2316799121. Epub 2024 May 16.
The mammalian brain implements sophisticated sensory processing algorithms along multilayered ("deep") neural networks. Strategies that insects use to meet similar computational demands, while relying on smaller nervous systems with shallow architectures, remain elusive. Using as a model, we uncover the algorithmic role of odor preprocessing by a shallow network of compartmentalized olfactory receptor neurons. Each compartment operates as a ratiometric unit for specific odor-mixtures. This computation arises from a simple mechanism: electrical coupling between two differently sized neurons. We demonstrate that downstream synaptic connectivity is shaped to optimally leverage amplification of a hedonic value signal in the periphery. Furthermore, peripheral preprocessing is shown to markedly improve novel odor classification in a higher brain center. Together, our work highlights a far-reaching functional role of the sensory periphery for downstream processing. By elucidating the implementation of powerful computations by a shallow network, we provide insights into general principles of efficient sensory processing algorithms.
哺乳动物大脑通过多层次的(“深度”)神经网络实现复杂的感官处理算法。而昆虫在依赖浅层架构的较小神经系统的情况下,如何满足类似的计算需求,仍然难以捉摸。我们以 为模型,揭示了由分隔的嗅觉受体神经元组成的浅层网络进行气味预处理的算法作用。每个隔室对于特定的气味混合物都作为一个比率单位运作。这种计算源自于一个简单的机制:两个大小不同的神经元之间的电耦合。我们证明了下游的突触连接被塑造成在周边区域中最佳地利用愉悦值信号的放大。此外,外围的预处理被证明可以显著提高在更高的大脑中枢中对新气味的分类能力。总的来说,我们的工作强调了感官外围在下游处理中的深远功能作用。通过阐明浅层网络实现强大计算的方式,我们为高效感官处理算法的一般原理提供了新的见解。