Suppr超能文献

神经元区室化:信息处理早期整合感觉输入的一种手段?

Neuronal Compartmentalization: A Means to Integrate Sensory Input at the Earliest Stage of Information Processing?

机构信息

Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.

出版信息

Bioessays. 2020 Aug;42(8):e2000026. doi: 10.1002/bies.202000026. Epub 2020 Jul 1.

Abstract

In numerous peripheral sense organs, external stimuli are detected by primary sensory neurons compartmentalized within specialized structures composed of cuticular or epithelial tissue. Beyond reflecting developmental constraints, such compartmentalization also provides opportunities for grouped neurons to functionally interact. Here, the authors review and illustrate the prevalence of these structural units, describe characteristics of compartmentalized neurons, and consider possible interactions between these cells. This article discusses instances of neuronal crosstalk, examples of which are observed in the vertebrate tastebuds and multiple types of arthropod chemosensory hairs. Particular attention is paid to insect olfaction, which presents especially well-characterized mechanisms of functional, cross-neuronal interactions. These examples highlight the potential impact of peripheral processing, which likely contributes more to signal integration than previously considered. In surveying a wide variety of structural units, it is hoped that this article will stimulate future research that determines whether grouped neurons in other sensory systems can also communicate to impact information processing.

摘要

在众多外周感觉器官中,初级感觉神经元在外周感觉器官的特定结构中被分隔开,这些结构由表皮或上皮组织构成。这种分隔不仅反映了发育的限制,还为神经元的功能相互作用提供了机会。作者在本文中综述并说明了这些结构单元的普遍性,描述了分隔神经元的特征,并考虑了这些细胞之间可能的相互作用。本文讨论了神经元串扰的实例,脊椎动物味蕾和多种类型的节肢动物化学感觉毛中都观察到了这种串扰。特别关注昆虫嗅觉,因为它呈现出特别特征化的功能、跨神经元相互作用的机制。这些实例突出了外周处理的潜在影响,这可能比以前认为的对信号整合的贡献更大。在调查了各种各样的结构单元后,作者希望本文能激发未来的研究,以确定其他感觉系统中的成组神经元是否也可以进行通信,从而影响信息处理。

相似文献

1
Neuronal Compartmentalization: A Means to Integrate Sensory Input at the Earliest Stage of Information Processing?
Bioessays. 2020 Aug;42(8):e2000026. doi: 10.1002/bies.202000026. Epub 2020 Jul 1.
2
Non-synaptic inhibition between grouped neurons in an olfactory circuit.
Nature. 2012 Dec 6;492(7427):66-71. doi: 10.1038/nature11712. Epub 2012 Nov 21.
4
Valence opponency in peripheral olfactory processing.
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5). doi: 10.1073/pnas.2120134119.
5
Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons.
Nat Commun. 2019 Apr 5;10(1):1560. doi: 10.1038/s41467-019-09346-z.
6
Parallel processing of afferent olfactory sensory information.
J Physiol. 2016 Nov 15;594(22):6715-6732. doi: 10.1113/JP272755. Epub 2016 Aug 2.
7
A microcomputer-controlled response measurement and analysis system for insect olfactory receptor neurons.
J Neurosci Methods. 1987 Aug;20(4):307-22. doi: 10.1016/0165-0270(87)90063-x.
8
Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research.
Curr Neuropharmacol. 2019;17(9):891-911. doi: 10.2174/1570159X17666181206095626.
9
The role of SNMPs in insect olfaction.
Cell Tissue Res. 2021 Jan;383(1):21-33. doi: 10.1007/s00441-020-03336-0. Epub 2020 Nov 27.

引用本文的文献

2
Simultaneous recording of spikes and calcium signals in odor-evoked responses of antennal neurons.
bioRxiv. 2025 Jun 29:2025.06.27.662059. doi: 10.1101/2025.06.27.662059.
4
An evolutionarily conserved cation channel tunes the sensitivity of gustatory neurons to ephaptic inhibition in .
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2413134122. doi: 10.1073/pnas.2413134122. Epub 2025 Jan 17.
7
Peripheral preprocessing in facilitates odor classification.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2316799121. doi: 10.1073/pnas.2316799121. Epub 2024 May 16.
8
Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans.
Dev Cell. 2024 Jul 8;59(13):1668-1688.e7. doi: 10.1016/j.devcel.2024.04.005. Epub 2024 Apr 25.
9
A conserved odorant receptor underpins borneol-mediated repellency in culicine mosquitoes.
bioRxiv. 2024 Jun 20:2023.08.01.548337. doi: 10.1101/2023.08.01.548337.
10
Silencing the odorant receptor co-receptor impairs olfactory reception in a sensillum-specific manner in the cockroach.
iScience. 2022 Apr 20;25(5):104272. doi: 10.1016/j.isci.2022.104272. eCollection 2022 May 20.

本文引用的文献

1
Mosquito heat seeking is driven by an ancestral cooling receptor.
Science. 2020 Feb 7;367(6478):681-684. doi: 10.1126/science.aay9847.
2
Stereotyped Combination of Hearing and Wind/Gravity-Sensing Neurons in the Johnston's Organ of .
Front Physiol. 2020 Jan 8;10:1552. doi: 10.3389/fphys.2019.01552. eCollection 2019.
3
Directional and frequency characteristics of auditory neurons in male mosquitoes.
J Exp Biol. 2019 Oct 31;222(Pt 21):jeb208785. doi: 10.1242/jeb.208785.
4
Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons.
Nat Commun. 2019 Apr 5;10(1):1560. doi: 10.1038/s41467-019-09346-z.
5
Ionotropic Receptors Specify the Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in Drosophila.
Neuron. 2019 Feb 20;101(4):738-747.e3. doi: 10.1016/j.neuron.2018.12.022. Epub 2019 Jan 14.
6
Neural Coding of Leg Proprioception in Drosophila.
Neuron. 2018 Nov 7;100(3):636-650.e6. doi: 10.1016/j.neuron.2018.09.009. Epub 2018 Oct 4.
8
Humidity response depends on the small soluble protein Obp59a in .
Elife. 2018 Sep 19;7:e39249. doi: 10.7554/eLife.39249.
9
Fine structure of tarsal sensilla of Aedes aegypti (L.) (Diptera: Culicidae).
J Morphol. 1978 Feb;155(2):137-155. doi: 10.1002/jmor.1051550202.
10
Fine structure of tarsal sensilla of male and female Simulium vittatum (Diptera: Simuliidae).
J Morphol. 1987 Apr;192(1):13-26. doi: 10.1002/jmor.1051920103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验