IV-A3 型 CRISPR-Cas 系统通过在转座过程中获取间隔序列来引发质粒间冲突。

Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans.

机构信息

Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.

Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.

出版信息

Cell Host Microbe. 2024 Jun 12;32(6):875-886.e9. doi: 10.1016/j.chom.2024.04.016. Epub 2024 May 15.

Abstract

Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.

摘要

质粒编码的 IV-A 型 CRISPR-Cas 系统缺乏获取模块,具有 DinG 解旋酶而不是核酸酶,并形成具有未知生物学功能的核糖核蛋白复合物。IV-A3 型系统由可移动的质粒携带,这些质粒通常含有抗生素抗性基因,并且它们的 CRISPR 阵列内容表明其在介导质粒间冲突方面发挥作用,但这一功能仍未得到探索。在这里,我们证明了一种质粒编码的 IV-A3 系统从其宿主肺炎克雷伯氏菌(K. pneumoniae)中借用了 I-E 型适应性机制来更新其 CRISPR 阵列。此外,我们揭示了通过 CRISPR RNA 依赖性转录抑制来引发强大的可移动质粒和噬菌体的干扰。通过沉默质粒核心功能,IV-A3 影响靶向质粒的水平转移和稳定性,支持其在质粒竞争中的作用。我们的发现揭示了 IV-A3 系统的机制和生态功能,并证明了它们在对抗临床相关菌株中的抗生素耐药性方面的实际效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索