Suppr超能文献

发现多种CRISPR前导序列基序、推定功能以及用于增强CRISPR检测和亚型注释的应用

Discovery of Diverse CRISPR Leader Motifs, Putative Functions, and Applications for Enhanced CRISPR Detection and Subtype Annotation.

作者信息

Buyukyoruk Murat, Krishna Pushya, Santiago-Frangos Andrew, Wiedenheft Blake

机构信息

Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA.

出版信息

CRISPR J. 2025 Apr;8(2):137-148. doi: 10.1089/crispr.2024.0093. Epub 2025 Jan 8.

Abstract

Bacteria and archaea acquire resistance to genetic parasites by preferentially integrating short fragments of foreign DNA at one end of a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR). "Leader" DNA upstream of CRISPR loci regulates transcription and foreign DNA integration into the CRISPR. Here, we analyze 37,477 CRISPRs from 39,277 bacterial and 556 archaeal genomes to identify conserved sequence motifs in CRISPR leaders. A global analysis of all leader sequences fails to identify universally conserved motifs. However, an analysis of leader sequences that have been grouped by 16S rRNA-based taxonomy and CRISPR subtype reveals 87 specific motifs in type I, II, III, and V CRISPR leaders. Fourteen of these leader motifs have biochemically demonstrated roles in CRISPR biology including integration, transcription, and CRISPR RNA processing. Another 28 motifs are related to DNA binding sites for proteins with functions that are consistent with regulating CRISPR activity. In addition, we show that these leader motifs can be used to improve existing CRISPR detection methods and enhance the accuracy of CRISPR classification.

摘要

细菌和古菌通过优先将外源DNA短片段整合到成簇规律间隔短回文重复序列(CRISPR)的一端来获得对基因寄生虫的抗性。CRISPR位点上游的“前导”DNA调控转录以及外源DNA整合到CRISPR中。在这里,我们分析了来自39277个细菌基因组和556个古菌基因组的37477个CRISPR,以鉴定CRISPR前导序列中的保守序列基序。对所有前导序列进行全局分析未能鉴定出普遍保守的基序。然而,对基于16S rRNA的分类法和CRISPR亚型进行分组的前导序列分析揭示了I型、II型、III型和V型CRISPR前导序列中的87个特定基序。其中14个前导基序在CRISPR生物学中具有经生物化学验证的作用,包括整合、转录和CRISPR RNA加工。另外28个基序与功能与调节CRISPR活性一致的蛋白质的DNA结合位点相关。此外,我们表明这些前导基序可用于改进现有的CRISPR检测方法并提高CRISPR分类的准确性。

相似文献

2
Evolutionary trends in CRISPR-Cas systems.
mSystems. 2025 Jun 18:e0016625. doi: 10.1128/msystems.00166-25.
4
EzBioCloud: a genome-driven database and platform for microbiome identification and discovery.
Int J Syst Evol Microbiol. 2024 Jun;74(6). doi: 10.1099/ijsem.0.006421.
6
Distribution and phasing of sequence motifs that facilitate CRISPR adaptation.
Curr Biol. 2021 Aug 23;31(16):3515-3524.e6. doi: 10.1016/j.cub.2021.05.068. Epub 2021 Jun 25.
7
Efficient CRISPR/Cas9-mediated ebony gene editing in the greater wax moth Galleria mellonella.
Insect Sci. 2025 Jun;32(3):833-844. doi: 10.1111/1744-7917.13427. Epub 2024 Aug 9.
8
Characterizing leader sequences of CRISPR loci.
Bioinformatics. 2016 Sep 1;32(17):i576-i585. doi: 10.1093/bioinformatics/btw454.

引用本文的文献

本文引用的文献

1
Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans.
Cell Host Microbe. 2024 Jun 12;32(6):875-886.e9. doi: 10.1016/j.chom.2024.04.016. Epub 2024 May 15.
2
CRISPR-Cas immunity is repressed by the LysR-type transcriptional regulator PigU.
Nucleic Acids Res. 2024 Jan 25;52(2):755-768. doi: 10.1093/nar/gkad1165.
3
Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering.
Science. 2023 Nov 24;382(6673):eadi1910. doi: 10.1126/science.adi1910. Epub 2023 Nov 23.
4
Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays.
Nat Struct Mol Biol. 2023 Nov;30(11):1675-1685. doi: 10.1038/s41594-023-01097-2. Epub 2023 Sep 14.
5
CRISPR-based engineering of RNA viruses.
Sci Adv. 2023 Sep 15;9(37):eadj8277. doi: 10.1126/sciadv.adj8277. Epub 2023 Sep 13.
6
Histones direct site-specific CRISPR spacer acquisition in model archaeon.
Nat Microbiol. 2023 Sep;8(9):1682-1694. doi: 10.1038/s41564-023-01446-3. Epub 2023 Aug 7.
7
Mechanisms regulating the CRISPR-Cas systems.
Front Microbiol. 2023 Feb 28;14:1060337. doi: 10.3389/fmicb.2023.1060337. eCollection 2023.
8
Systematic Identification of CpxRA-Regulated Genes and Their Roles in Escherichia coli Stress Response.
mSystems. 2022 Oct 26;7(5):e0041922. doi: 10.1128/msystems.00419-22. Epub 2022 Sep 7.
9
CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics.
Methods. 2022 Sep;205:1-10. doi: 10.1016/j.ymeth.2022.06.002. Epub 2022 Jun 9.
10
Structural biology of CRISPR-Cas immunity and genome editing enzymes.
Nat Rev Microbiol. 2022 Nov;20(11):641-656. doi: 10.1038/s41579-022-00739-4. Epub 2022 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验