Suppr超能文献

发现多种CRISPR前导序列基序、推定功能以及用于增强CRISPR检测和亚型注释的应用

Discovery of Diverse CRISPR Leader Motifs, Putative Functions, and Applications for Enhanced CRISPR Detection and Subtype Annotation.

作者信息

Buyukyoruk Murat, Krishna Pushya, Santiago-Frangos Andrew, Wiedenheft Blake

机构信息

Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA.

出版信息

CRISPR J. 2025 Apr;8(2):137-148. doi: 10.1089/crispr.2024.0093. Epub 2025 Jan 8.

Abstract

Bacteria and archaea acquire resistance to genetic parasites by preferentially integrating short fragments of foreign DNA at one end of a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR). "Leader" DNA upstream of CRISPR loci regulates transcription and foreign DNA integration into the CRISPR. Here, we analyze 37,477 CRISPRs from 39,277 bacterial and 556 archaeal genomes to identify conserved sequence motifs in CRISPR leaders. A global analysis of all leader sequences fails to identify universally conserved motifs. However, an analysis of leader sequences that have been grouped by 16S rRNA-based taxonomy and CRISPR subtype reveals 87 specific motifs in type I, II, III, and V CRISPR leaders. Fourteen of these leader motifs have biochemically demonstrated roles in CRISPR biology including integration, transcription, and CRISPR RNA processing. Another 28 motifs are related to DNA binding sites for proteins with functions that are consistent with regulating CRISPR activity. In addition, we show that these leader motifs can be used to improve existing CRISPR detection methods and enhance the accuracy of CRISPR classification.

摘要

细菌和古菌通过优先将外源DNA短片段整合到成簇规律间隔短回文重复序列(CRISPR)的一端来获得对基因寄生虫的抗性。CRISPR位点上游的“前导”DNA调控转录以及外源DNA整合到CRISPR中。在这里,我们分析了来自39277个细菌基因组和556个古菌基因组的37477个CRISPR,以鉴定CRISPR前导序列中的保守序列基序。对所有前导序列进行全局分析未能鉴定出普遍保守的基序。然而,对基于16S rRNA的分类法和CRISPR亚型进行分组的前导序列分析揭示了I型、II型、III型和V型CRISPR前导序列中的87个特定基序。其中14个前导基序在CRISPR生物学中具有经生物化学验证的作用,包括整合、转录和CRISPR RNA加工。另外28个基序与功能与调节CRISPR活性一致的蛋白质的DNA结合位点相关。此外,我们表明这些前导基序可用于改进现有的CRISPR检测方法并提高CRISPR分类的准确性。

相似文献

2
Evolutionary trends in CRISPR-Cas systems.CRISPR-Cas系统的进化趋势。
mSystems. 2025 Jun 18:e0016625. doi: 10.1128/msystems.00166-25.
6
Distribution and phasing of sequence motifs that facilitate CRISPR adaptation.序列基序的分布和相位促进 CRISPR 适应。
Curr Biol. 2021 Aug 23;31(16):3515-3524.e6. doi: 10.1016/j.cub.2021.05.068. Epub 2021 Jun 25.
8
Characterizing leader sequences of CRISPR loci.表征CRISPR基因座的前导序列。
Bioinformatics. 2016 Sep 1;32(17):i576-i585. doi: 10.1093/bioinformatics/btw454.

本文引用的文献

5
CRISPR-based engineering of RNA viruses.基于 CRISPR 的 RNA 病毒工程。
Sci Adv. 2023 Sep 15;9(37):eadj8277. doi: 10.1126/sciadv.adj8277. Epub 2023 Sep 13.
7
Mechanisms regulating the CRISPR-Cas systems.调控CRISPR-Cas系统的机制。
Front Microbiol. 2023 Feb 28;14:1060337. doi: 10.3389/fmicb.2023.1060337. eCollection 2023.
10
Structural biology of CRISPR-Cas immunity and genome editing enzymes.CRISPR-Cas 免疫和基因组编辑酶的结构生物学。
Nat Rev Microbiol. 2022 Nov;20(11):641-656. doi: 10.1038/s41579-022-00739-4. Epub 2022 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验