College of Materials and Chemistry & Chemical Engineering, Cheng Du University of Technology, Cheng Du, 610059, PR China.
College of Materials and Chemistry & Chemical Engineering, Cheng Du University of Technology, Cheng Du, 610059, PR China.
Chemosphere. 2024 Jul;360:142325. doi: 10.1016/j.chemosphere.2024.142325. Epub 2024 May 14.
Enhancing the kinetic performance of thick electrodes is essential for improving the efficiency of lithium extraction processes. Biochar, known for its affordability and unique three-dimensional (3D) structure, is utilized across various applications. In this study, we developed a biochar-based, 3D-conductive network thick electrode (∼20 mg cm) by in-situ deposition of LiFePO (LFP) onto watermelon peel biomass (WB). Utilizing Density Functional Theory (DFT) calculations complemented by experimental data, we confirmed that this The thick electrode exhibits outstanding kinetic properties and a high capacity for lithium intercalation in brines, even in environments where the Magnesia-lithium ratios are significantly high. The electrode showed an impressive intercalation capacity of 30.67 mg g within 10 min in a pure lithium solution. It also maintained high intercalation performance (31.17 mg g) in simulated brines with high Magnesia-lithium ratios. Moreover, in actual brine, it demonstrated a significant extraction capacity (23.87 mg g), effectively lowering the Magnesia-lithium ratio from 65 to 0.50. This breakthrough in high-conductivity thick electrode design offers new perspectives for lithium extraction technologies.
提高厚电极的动力学性能对于提高锂提取过程的效率至关重要。生物炭以其价格低廉和独特的三维(3D)结构而被广泛应用于各种应用中。在这项研究中,我们通过将 LiFePO(LFP)原位沉积到西瓜皮生物质(WB)上,开发了一种基于生物炭的 3D 导电网络厚电极(∼20 mg cm)。利用密度泛函理论(DFT)计算和实验数据的补充,我们证实了这种厚电极在卤水中具有出色的动力学性能和高的锂嵌入容量,即使在氧化镁-锂比例显著较高的环境中也是如此。该电极在纯锂溶液中 10 分钟内表现出令人印象深刻的 30.67 mg g 的嵌入容量。它在具有高氧化镁-锂比例的模拟卤水中也保持了高的嵌入性能(31.17 mg g)。此外,在实际卤水中,它表现出了显著的提取容量(23.87 mg g),有效地将氧化镁-锂比例从 65 降低到 0.50。这种高导电性厚电极设计的突破为锂提取技术提供了新的视角。