Suppr超能文献

基于模型的生物工艺开发路线图。

A roadmap for model-based bioprocess development.

机构信息

Process & Chemical Engineering, School of Engineering & Architecture, University College Cork, Ireland; DPS Group Cork, Arcadis, Netherlands.

Process & Chemical Engineering, School of Engineering & Architecture, University College Cork, Ireland.

出版信息

Biotechnol Adv. 2024 Jul-Aug;73:108378. doi: 10.1016/j.biotechadv.2024.108378. Epub 2024 May 15.

Abstract

The bioprocessing industry is undergoing a significant transformation in its approach to quality assurance, shifting from the traditional Quality by Testing (QbT) to Quality by Design (QbD). QbD, a systematic approach to quality in process development, integrates quality into process design and control, guided by regulatory frameworks. This paradigm shift enables increased operational efficiencies, reduced market time, and ensures product consistency. The implementation of QbD is framed around key elements such as defining the Quality Target Product Profile (QTPPs), identifying Critical Quality Attributes (CQAs), developing Design Spaces (DS), establishing Control Strategies (CS), and maintaining continual improvement. The present critical analysis delves into the intricacies of each element, emphasizing their role in ensuring consistent product quality and regulatory compliance. The integration of Industry 4.0 and 5.0 technologies, including Artificial Intelligence (AI), Machine Learning (ML), Internet of Things (IoT), and Digital Twins (DTs), is significantly transforming the bioprocessing industry. These innovations enable real-time data analysis, predictive modelling, and process optimization, which are crucial elements in QbD implementation. Among these, the concept of DTs is notable for its ability to facilitate bi-directional data communication and enable real-time adjustments and therefore optimize processes. DTs, however, face implementation challenges such as system integration, data security, and hardware-software compatibility. These challenges are being addressed through advancements in AI, Virtual Reality/ Augmented Reality (VR/AR), and improved communication technologies. Central to the functioning of DTs is the development and application of various models of differing types - mechanistic, empirical, and hybrid. These models serve as the intellectual backbone of DTs, providing a framework for interpreting and predicting the behaviour of their physical counterparts. The choice and development of these models are vital for the accuracy and efficacy of DTs, enabling them to mirror and predict the real-time dynamics of bioprocessing systems. Complementing these models, advancements in data collection technologies, such as free-floating wireless sensors and spectroscopic sensors, enhance the monitoring and control capabilities of DTs, providing a more comprehensive and nuanced understanding of the bioprocessing environment. This review offers a critical analysis of the prevailing trends in model-based bioprocessing development within the sector.

摘要

生物加工行业在质量保证方面正在经历重大转型,从传统的基于测试的质量(QbT)转变为基于设计的质量(QbD)。QbD 是一种在工艺开发中集成质量的系统方法,在监管框架的指导下,将质量融入工艺设计和控制中。这种范式转变提高了运营效率,缩短了上市时间,并确保了产品的一致性。QbD 的实施围绕着定义质量目标产品概况(QTPPs)、确定关键质量属性(CQAs)、开发设计空间(DS)、建立控制策略(CS)和持续改进等关键要素展开。目前的关键分析深入探讨了每个要素的复杂性,强调了它们在确保产品质量一致性和法规遵从性方面的作用。工业 4.0 和 5.0 技术的整合,包括人工智能(AI)、机器学习(ML)、物联网(IoT)和数字孪生(DT),正在极大地改变生物加工行业。这些创新使得实时数据分析、预测建模和工艺优化成为可能,这是 QbD 实施的关键要素。在这些技术中,DT 的概念值得注意,因为它能够促进双向数据通信,并实时调整和优化过程。然而,DT 面临着系统集成、数据安全和软硬件兼容性等实施挑战。这些挑战正在通过人工智能、虚拟现实/增强现实(VR/AR)和改进的通信技术的进步来解决。DT 的运行的核心是开发和应用各种不同类型的模型,包括机械模型、经验模型和混合模型。这些模型是 DT 的知识骨干,为解释和预测其物理对应物的行为提供了框架。这些模型的选择和开发对于 DT 的准确性和有效性至关重要,使它们能够反映和预测生物加工系统的实时动态。为了补充这些模型,无线传感器和光谱传感器等自由浮动无线传感器等数据收集技术的进步增强了 DT 的监测和控制能力,提供了对生物加工环境更全面和细致的理解。本综述对该领域基于模型的生物加工开发中当前的趋势进行了批判性分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验