Suppr超能文献

确定药品中 N-亚硝胺杂质的推荐可接受摄入量限值:致癌潜能分类法(CPCA)的制定和应用。

Determining recommended acceptable intake limits for N-nitrosamine impurities in pharmaceuticals: Development and application of the Carcinogenic Potency Categorization Approach (CPCA).

机构信息

US Food and Drug Administration (US FDA), Silver Spring, MD, USA.

Danish Medicines Agency (DKMA), Copenhagen, Denmark.

出版信息

Regul Toxicol Pharmacol. 2024 Jun;150:105640. doi: 10.1016/j.yrtph.2024.105640. Epub 2024 May 14.

Abstract

N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups. Furthermore, the absence of a surrogate has resulted in conservative AI limits in some cases, posing practical challenges for impurity control. Therefore, a new framework for determining recommended AI limits was urgently needed. Here, the Carcinogenic Potency Categorization Approach (CPCA) and its supporting scientific rationale are presented. The CPCA is a rapidly-applied structure-activity relationship-based method that assigns a nitrosamine to 1 of 5 categories, each with a corresponding AI limit, reflecting predicted carcinogenic potency. The CPCA considers the number and distribution of α-hydrogens at the N-nitroso center and other activating and deactivating structural features of a nitrosamine that affect the α-hydroxylation metabolic activation pathway of carcinogenesis. The CPCA has been adopted internationally by several drug regulatory authorities as a simplified approach and a starting point to determine recommended AI limits for nitrosamines without the need for compound-specific empirical data.

摘要

在过去的 5 年里,N-亚硝胺杂质(包括与亚硝胺原料药相关的杂质(NDSRIs))给制药行业和监管机构带来了挑战,并影响了全球药物供应。亚硝胺是一类已知的致癌物质,但 NDSRIs 带来了额外的挑战,因为许多 NDSRIs 缺乏经验数据来确定可接受的摄入量(AI)限值。从替代物进行的读通分析已被用于在某些情况下确定 AI 限值;然而,这种方法受到可用的与 NDSRIs 的结构特征相匹配的经过充分测试的替代物的限制,这些替代物通常含有多种多样的功能基团。此外,在某些情况下,由于缺乏替代物,导致 AI 限值保守,这给杂质控制带来了实际挑战。因此,迫切需要建立一种确定推荐 AI 限值的新框架。本文介绍了致癌潜能分类方法(CPCA)及其支持的科学原理。CPCA 是一种快速应用的基于结构-活性关系的方法,它将亚硝胺分为 5 类之一,每类都有相应的 AI 限值,反映了预测的致癌潜能。CPCA 考虑了 N-亚硝胺中心的α-氢的数量和分布以及影响致癌形成的α-羟化代谢激活途径的其他激活和失活结构特征。CPCA 已被几个药物监管机构采用,作为一种简化的方法和确定亚硝胺推荐 AI 限值的起点,而无需特定化合物的经验数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验