Suppr超能文献

基于常规收集的健康数据的研究中算法的验证:一般原则。

Validation of algorithms in studies based on routinely collected health data: general principles.

机构信息

Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus N, Denmark.

Research Unit of Clinical Pharmacology, Pharmacy, and Environmental Medicine, University of Southern Denmark, 5230 Odense M, Denmark.

出版信息

Am J Epidemiol. 2024 Nov 4;193(11):1612-1624. doi: 10.1093/aje/kwae071.

Abstract

Clinicians, researchers, regulators, and other decision-makers increasingly rely on evidence from real-world data (RWD), including data routinely accumulating in health and administrative databases. RWD studies often rely on algorithms to operationalize variable definitions. An algorithm is a combination of codes or concepts used to identify persons with a specific health condition or characteristic. Establishing the validity of algorithms is a prerequisite for generating valid study findings that can ultimately inform evidence-based health care. In this paper, we aim to systematize terminology, methods, and practical considerations relevant to the conduct of validation studies of RWD-based algorithms. We discuss measures of algorithm accuracy, gold/reference standards, study size, prioritization of accuracy measures, algorithm portability, and implications for interpretation. Information bias is common in epidemiologic studies, underscoring the importance of transparency in decisions regarding choice and prioritizing measures of algorithm validity. The validity of an algorithm should be judged in the context of a data source, and one size does not fit all. Prioritizing validity measures within a given data source depends on the role of a given variable in the analysis (eligibility criterion, exposure, outcome, or covariate). Validation work should be part of routine maintenance of RWD sources. This article is part of a Special Collection on Pharmacoepidemiology.

摘要

临床医生、研究人员、监管机构和其他决策者越来越依赖真实世界数据(RWD)的证据,包括在健康和行政数据库中常规积累的数据。RWD 研究通常依赖于算法来实现变量定义的操作化。算法是用于识别具有特定健康状况或特征的人员的代码或概念的组合。建立算法的有效性是生成有效研究结果的前提,这些结果最终可以为基于证据的医疗保健提供信息。在本文中,我们旨在使与基于 RWD 的算法验证研究相关的术语、方法和实际考虑因素系统化。我们讨论了算法准确性的度量、黄金/参考标准、研究规模、准确性度量的优先级、算法可移植性以及对解释的影响。在流行病学研究中,信息偏倚很常见,这突显了在选择和优先考虑算法有效性度量方面做出决策时透明度的重要性。应根据数据源来判断算法的有效性,并且一种方法并不适用于所有情况。在给定的数据源中,优先考虑有效性度量取决于给定变量在分析中的作用(入选标准、暴露、结局或协变量)。验证工作应成为 RWD 源常规维护的一部分。本文是药物流行病学特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验