Suppr超能文献

在电子健康记录数据库的临床记录中识别室性心律失常和心脏骤停。

Identifying ventricular arrhythmia and sudden cardiac arrest in clinical notes of an electronic health record database.

作者信息

Dhopeshwarkar Neil, Dharmani Charles, Fofah Oluwatosin, Tu Nora, Khan Nasser, Kou Tzuyung Douglas, Chan K Arnold

机构信息

Research and Data Solutions, TriNetX, LLC, Cambridge, MA, USA.

Epidemiology, Clinical Safety and Pharmacovigilance, Daiichi Sankyo Inc, Basking Ridge, NJ, USA.

出版信息

Future Cardiol. 2025 Jun;21(8):593-598. doi: 10.1080/14796678.2025.2506956. Epub 2025 May 18.

Abstract

AIM

Validating an operational algorithm for identifying ventricular arrhythmia and sudden cardiac arrest (VA/SCA) in electronic health record (EHR) data may be useful to minimize measurement bias in studies characterizing real-world VA/SCA risk; however, validation studies require an appropriate reference standard. We aimed to assess if adequate information is documented in unstructured clinical notes of a large EHR database to serve as a reference standard for future validation studies of VA/SCA.

METHODS

Twenty potential VA/SCA events were randomly selected from unstructured clinical notes of a large EHR database, TriNetX Dataworks - USA. These notes were reviewed to assess if key clinical elements were documented to confirm the occurrence of VA/SCA and describe their clinical features. These included explicit documentation of an acute event, electrocardiogram (ECG) findings, urgent medical interventions, and other elements.

RESULTS

Explicit documentation of an acute event was recorded for 17 patients (85.0%) and ECG findings were documented for 15 patients (75.0%). Generally, unstructured clinical notes also contained information about signs and symptoms, care setting, medical interventions administered, and event resolution.

CONCLUSIONS

The unstructured clinical notes of a large EHR database contained the information necessary to serve as a reference standard for validation studies of a VA/SCA operational algorithm in EHR data.

摘要

目的

验证一种用于识别电子健康记录(EHR)数据中心室心律失常和心脏骤停(VA/SCA)的操作算法,对于在描述真实世界VA/SCA风险的研究中尽量减少测量偏差可能是有用的;然而,验证研究需要一个合适的参考标准。我们旨在评估一个大型EHR数据库的非结构化临床记录中是否记录了足够的信息,以作为未来VA/SCA验证研究的参考标准。

方法

从一个大型EHR数据库TriNetX Dataworks - USA的非结构化临床记录中随机选择20个潜在的VA/SCA事件。对这些记录进行审查,以评估是否记录了关键临床要素,以确认VA/SCA的发生并描述其临床特征。这些要素包括急性事件的明确记录、心电图(ECG)结果、紧急医疗干预措施以及其他要素。

结果

17例患者(85.0%)记录了急性事件的明确记录,15例患者(75.0%)记录了ECG结果。一般来说,非结构化临床记录还包含有关体征和症状、护理环境、实施的医疗干预措施以及事件解决情况的信息。

结论

一个大型EHR数据库的非结构化临床记录包含了必要的信息,可作为EHR数据中VA/SCA操作算法验证研究的参考标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验