Carollo Federico, Lesanovsky Igor, Garrahan Juan P
Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany.
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Phys Rev E. 2024 Apr;109(4-1):044129. doi: 10.1103/PhysRevE.109.044129.
We consider quantum-jump trajectories of Markovian open quantum systems subject to stochastic in time resets of their state to an initial configuration. The reset events provide a partitioning of quantum trajectories into consecutive time intervals, defining sequences of random variables from the values of a trajectory observable within each of the intervals. For observables related to functions of the quantum state, we show that the probability of certain orderings in the sequences obeys a universal law. This law does not depend on the chosen observable and, in the case of Poissonian reset processes, not even on the details of the dynamics. When considering (discrete) observables associated with the counting of quantum jumps, the probabilities in general lose their universal character. Universality is only recovered in cases when the probability of observing equal outcomes in the same sequence is vanishingly small, which we can achieve in a weak-reset-rate limit. Our results extend previous findings on classical stochastic processes [N. R. Smith et al., Europhys. Lett. 142, 51002 (2023)0295-507510.1209/0295-5075/acd79e] to the quantum domain and to state-dependent reset processes, shedding light on relevant aspects for the emergence of universal probability laws.
我们考虑马尔可夫开放量子系统的量子跳跃轨迹,这些系统的状态会随时间随机重置为初始配置。重置事件将量子轨迹划分为连续的时间间隔,根据每个间隔内轨迹可观测量的值定义随机变量序列。对于与量子态函数相关的可观测量,我们表明序列中某些排序的概率遵循一个通用定律。该定律不依赖于所选的可观测量,并且在泊松重置过程的情况下,甚至不依赖于动力学的细节。当考虑与量子跳跃计数相关的(离散)可观测量时,概率通常会失去其通用性。只有在同一序列中观察到相等结果的概率极小的情况下,通用性才会恢复,我们可以在弱重置率极限中实现这一点。我们的结果将先前关于经典随机过程的发现 [N. R. 史密斯等人,《欧洲物理快报》142, 51002 (2023)0295 - 507510.1209/0295 - 5075/acd79e] 扩展到量子领域以及与状态相关的重置过程,揭示了通用概率定律出现的相关方面。