Suppr超能文献

美国的集群:运用机器学习理解美国的健康与医疗保健差异。

American clusters: using machine learning to understand health and health care disparities in the United States.

作者信息

Bowser Diana M, Maurico Kaili, Ruscitti Brielle A, Crown William H

机构信息

Connell School of Nursing, Boston College, Chestnut Hill, MA 02467, United States.

Heller School for Social Policy and Management, Brandeis University, Waltham, MA 02454, United States.

出版信息

Health Aff Sch. 2024 Feb 14;2(3):qxae017. doi: 10.1093/haschl/qxae017. eCollection 2024 Mar.

Abstract

Health and health care access in the United States are plagued by high inequality. While machine learning (ML) is increasingly used in clinical settings to inform health care delivery decisions and predict health care utilization, using ML as a research tool to understand health care disparities in the United States and how these are connected to health outcomes, access to health care, and health system organization is less common. We utilized over 650 variables from 24 different databases aggregated by the Agency for Healthcare Research and Quality in their Social Determinants of Health (SDOH) database. We used -means-a non-hierarchical ML clustering method-to cluster county-level data. Principal factor analysis created county-level index values for each SDOH domain and 2 health care domains: health care infrastructure and health care access. Logistic regression classification was used to identify the primary drivers of cluster classification. The most efficient cluster classification consists of 3 distinct clusters in the United States; the cluster having the highest life expectancy comprised only 10% of counties. The most efficient ML clusters do not identify the clusters with the widest health care disparities. ML clustering, using county-level data, shows that health care infrastructure and access are the primary drivers of cluster composition.

摘要

美国的健康状况和医疗保健可及性饱受高度不平等问题的困扰。虽然机器学习(ML)在临床环境中越来越多地被用于为医疗保健提供决策提供信息并预测医疗保健利用率,但将ML用作研究工具来了解美国的医疗保健差距以及这些差距如何与健康结果、医疗保健可及性和卫生系统组织相关联的情况却不太常见。我们利用了医疗保健研究与质量局在其健康的社会决定因素(SDOH)数据库中汇总的来自24个不同数据库的650多个变量。我们使用均值法(一种非分层ML聚类方法)对县级数据进行聚类。主因子分析为每个SDOH领域和两个医疗保健领域(医疗保健基础设施和医疗保健可及性)创建了县级指数值。逻辑回归分类用于确定聚类分类的主要驱动因素。在美国,最有效的聚类分类由3个不同的聚类组成;预期寿命最高的聚类仅占县总数的10%。最有效的ML聚类并未识别出医疗保健差距最大的聚类。使用县级数据进行的ML聚类表明,医疗保健基础设施和可及性是聚类组成的主要驱动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7425/10986293/9c9bdb9645d1/qxae017f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验