robotics and biosensor systems, and Frontier nucleic acid technologies in gene therapy of cancer SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation.
Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA.
Chemistry. 2024 Jul 16;30(40):e202401580. doi: 10.1002/chem.202401580. Epub 2024 Jun 20.
Both tight and specific binding of folded biological mRNA is required for gene silencing by oligonucleotide gene therapy agents. However, this is fundamentally impossible using the conventional oligonucleotide probes according to the affinity/specificity dilemma. This study addresses this problem for cleaving folded RNA by using multicomponent agents (dubbed 'DNA nanomachine' or DNM). DNMs bind RNA by four short RNA binding arms, which ensure tight and highly selective RNA binding. Along with the improved affinity, DNM maintain the high sequence selectivity of the conventional DNAzymes. DNM enabled up to 3-fold improvement in DNAzymes catalytic efficiency (k/K) by facilitating both RNA substrate binding and product release steps of the catalytic cycle. This study demonstrates that multicomponent probes organized in sophisticated structures can help to achieve the balance between affinity and selectivity in recognizing folded RNA and thus creates a foundation for applying complex DNA nanostructures derived by DNA nanotechnology in gene therapy.
寡核苷酸基因治疗剂通过基因沉默需要折叠生物 mRNA 的紧密和特异性结合。然而,根据亲和力/特异性困境,这在使用常规寡核苷酸探针时从根本上是不可能的。本研究通过使用多组分试剂(称为“DNA 纳米机器”或 DNM)来解决这个问题,以切割折叠的 RNA。DNM 通过四个短的 RNA 结合臂与 RNA 结合,这确保了紧密且高度选择性的 RNA 结合。随着亲和力的提高,DNM 保持了传统 DNA 酶的高序列选择性。DNM 通过促进催化循环中的 RNA 底物结合和产物释放步骤,使 DNA 酶的催化效率(k/K)提高了近 3 倍。本研究表明,组织在复杂结构中的多组分探针可以帮助在识别折叠 RNA 时在亲和力和选择性之间取得平衡,从而为在基因治疗中应用 DNA 纳米技术衍生的复杂 DNA 纳米结构奠定了基础。