Department of Materials, Imperial College London, SW7 2AZ London, U.K.
J Chem Inf Model. 2024 Jun 10;64(11):4419-4425. doi: 10.1021/acs.jcim.4c00376. Epub 2024 May 17.
The atomic partial charge is of great importance in many fields, such as chemistry and drug-target recognition. However, conventional quantum-based computing of atomic charges is relatively slow, limiting further applications of atomic charge analysis. With the help of machine learning methods, various kinds of models appear to speed up atomic charge calculations. However, there are still some concerning problems. Some models based on geometric coordinates require high-accuracy geometry optimization as a preprocess, while other models have a limitation on the size of input molecules that narrow the applications of the model. Here, we propose a machine learning atomic charge model based on a message-passing featurizer. This preprocessing featurizer can quickly extract atomic environment information from a molecule according to the connectivity inside the molecule. The resulting descriptor can be used with a neural network to quickly predict the atomic partial charge. The model is able to automatically adapt to any size of molecule while remaining efficient and achieves a root-mean-square error in the Hirshfeld charge prediction of 0.018e, with an overall time complexity of (). Thus, this model could enlarge the range of applications of atomic partial charge to more fields and cases.
原子电荷在化学和药物靶点识别等许多领域都非常重要。然而,基于量子的传统原子电荷计算相对较慢,限制了原子电荷分析的进一步应用。借助机器学习方法,各种模型似乎可以加快原子电荷的计算。然而,仍然存在一些令人担忧的问题。一些基于几何坐标的模型需要高精度的几何优化作为预处理,而其他模型对输入分子的大小有限制,限制了模型的应用。在这里,我们提出了一种基于消息传递特征提取器的机器学习原子电荷模型。这个预处理特征提取器可以根据分子内部的连接快速从分子中提取原子环境信息。由此产生的描述符可以与神经网络一起用于快速预测原子部分电荷。该模型能够自动适应任何大小的分子,同时保持高效,在 Hirshfeld 电荷预测中的均方根误差为 0.018e,总时间复杂度为 ()。因此,该模型可以将原子部分电荷的应用范围扩大到更多的领域和情况。