Suppr超能文献

NNAIMQ:一种用于预测 QTAIM 电荷的神经网络模型。

NNAIMQ: A neural network model for predicting QTAIM charges.

机构信息

Depto. Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain.

Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, Mexico City C.P. 04510, Mexico.

出版信息

J Chem Phys. 2022 Jan 7;156(1):014112. doi: 10.1063/5.0076896.

Abstract

Atomic charges provide crucial information about the electronic structure of a molecular system. Among the different definitions of these descriptors, the one proposed by the Quantum Theory of Atoms in Molecules (QTAIM) is particularly attractive given its invariance against orbital transformations although the computational cost associated with their calculation limits its applicability. Given that Machine Learning (ML) techniques have been shown to accelerate orders of magnitude the computation of a number of quantum mechanical observables, in this work, we take advantage of ML knowledge to develop an intuitive and fast neural network model (NNAIMQ) for the computation of QTAIM charges for C, H, O, and N atoms with high accuracy. Our model has been trained and tested using data from quantum chemical calculations in more than 45 000 molecular environments of the near-equilibrium CHON chemical space. The reliability and performance of NNAIMQ have been analyzed in a variety of scenarios, from equilibrium geometries to molecular dynamics simulations. Altogether, NNAIMQ yields remarkably small prediction errors, well below the 0.03 electron limit in the general case, while accelerating the calculation of QTAIM charges by several orders of magnitude.

摘要

原子电荷提供了关于分子系统电子结构的关键信息。在这些描述符的不同定义中,量子化学中的原子理论(QTAIM)提出的定义特别有吸引力,因为它不受轨道变换的影响,尽管与计算相关的计算成本限制了其适用性。鉴于机器学习 (ML) 技术已被证明可以大大加速许多量子力学观测值的计算,在这项工作中,我们利用 ML 知识开发了一种直观且快速的神经网络模型 (NNAIMQ),用于计算 C、H、O 和 N 原子的 QTAIM 电荷,具有很高的准确性。我们的模型使用来自近平衡 CHON 化学空间中超过 45000 个分子环境的量子化学计算数据进行了训练和测试。从平衡几何形状到分子动力学模拟,我们分析了 NNAIMQ 在各种情况下的可靠性和性能。总的来说,NNAIMQ 产生的预测误差非常小,在一般情况下远低于 0.03 电子的限制,同时将 QTAIM 电荷的计算加速了几个数量级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验