Suppr超能文献

超分子连接的铠甲状纳米结构助力机械坚固的辐射冷却材料。

Supramolecularly Connected Armor-like Nanostructure Enables Mechanically Robust Radiative Cooling Materials.

作者信息

Zhou Peng, Wang Yuyan, Zhang Xinxing

机构信息

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.

Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.

出版信息

Nano Lett. 2024 May 29;24(21):6395-6402. doi: 10.1021/acs.nanolett.4c01418. Epub 2024 May 17.

Abstract

Passive daytime radiative cooling (PDRC) is a promising practice to realize sustainable thermal management with no energy and resources consumption. However, there remains a challenge of simultaneously integrating desired solar reflectivity, environmental durability, and mechanical robustness for polymeric composites with nanophotonic structures. Herein, inspired by a classical armor shell of a pangolin, we adopt a generic design strategy that harnesses supramolecular bonds between the TiO-decorated mica microplates and cellulose nanofibers to collectively produce strong interfacial interactions for fabricating interlayer nanostructured PDRC materials. Owing to the strong light scattering excited by hierarchical nanophotonic structures, the bioinspired film demonstrates a desired reflectivity (92%) and emissivity (91%) and an excellent temperature drop of 10 °C under direct sunlight. Notably, the film guarantees high strength (41.7 MPa), toughness (10.4 MJ m), and excellent environmental durability. This strategy provides possibilities in designing polymeric PDRC materials, further establishing a blueprint for other functional applications like soft robots, wearable devices, etc.

摘要

被动日间辐射冷却(PDRC)是一种有望实现无能源和资源消耗的可持续热管理的方法。然而,对于具有纳米光子结构的聚合物复合材料而言,要同时实现所需的太阳能反射率、环境耐久性和机械强度,仍然是一项挑战。在此,受穿山甲经典铠甲外壳的启发,我们采用了一种通用设计策略,利用装饰有TiO的云母微板与纤维素纳米纤维之间的超分子键,共同产生强大的界面相互作用,以制备层间纳米结构的PDRC材料。由于分级纳米光子结构激发的强烈光散射,这种受生物启发的薄膜具有所需的反射率(92%)和发射率(91%),在直射阳光下的温度降幅可达10℃。值得注意的是,该薄膜具有高强度(41.7 MPa)、韧性(10.4 MJ m)和出色的环境耐久性。这一策略为设计聚合物PDRC材料提供了可能性,进一步为软机器人、可穿戴设备等其他功能应用建立了蓝图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验