Suppr超能文献

使用光谱成像CT数据进行三维化学成分分析的具有先验降维的快速计算方法。

Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.

作者信息

Shiga Motoki, Ono Taisuke, Morishita Kenichi, Kuno Keiji, Moriguchi Nanase

机构信息

Unprecedented-scale Data Analytics Center, Tohoku University, 468-1 Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8578, Japan.

Graduate School of Information Science, Tohoku University, 6-3-09 Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8579, Japan.

出版信息

Microscopy (Oxf). 2024 Dec 5;73(6):488-498. doi: 10.1093/jmicro/dfae027.

Abstract

Spectral image (SI) measurement techniques, such as X-ray absorption fine structure (XAFS) imaging and scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), are useful for identifying chemical structures in composite materials. Machine-learning techniques have been developed for automatic analysis of SI data and their usefulness has been proven. Recently, an extended measurement technique combining SI with a computed tomography (CT) technique (CT-SI), such as CT-XAFS and STEM-EDS/EELS tomography, was developed to identify the three-dimensional (3D) structures of chemical components. CT-SI analysis can be conducted by combining CT reconstruction algorithms and chemical component analysis based on machine-learning techniques. However, this analysis incurs high-computational costs owing to the size of the CT-SI datasets. To address this problem, this study proposed a fast computational approach for 3D chemical component analysis in an unsupervised learning setting. The primary idea for reducing the computational cost involved compressing the CT-SI data prior to CT computation and performing 3D reconstruction and chemical component analysis on the compressed data. The proposed approach significantly reduced the computational cost without losing information about the 3D structure and chemical components. We experimentally evaluated the proposed approach using synthetic and real CT-XAFS data, which demonstrated that our approach achieved a significantly faster computational speed than the conventional approach while maintaining analysis performance. As the proposed procedure can be implemented with any CT algorithm, it is expected to accelerate 3D analyses with sparse regularized CT algorithms in noisy and sparse CT-SI datasets.

摘要

光谱图像(SI)测量技术,如X射线吸收精细结构(XAFS)成像以及配备能量色散X射线光谱(EDS)或电子能量损失光谱(EELS)的扫描透射电子显微镜(STEM),对于识别复合材料中的化学结构很有用。机器学习技术已被开发用于自动分析SI数据,并且其有效性已得到证明。最近,一种将SI与计算机断层扫描(CT)技术相结合的扩展测量技术(CT-SI),如CT-XAFS和STEM-EDS/EELS断层扫描,被开发出来以识别化学成分的三维(3D)结构。CT-SI分析可以通过结合CT重建算法和基于机器学习技术的化学成分分析来进行。然而,由于CT-SI数据集的规模,这种分析会产生很高的计算成本。为了解决这个问题,本研究提出了一种在无监督学习环境下进行3D化学成分分析的快速计算方法。降低计算成本的主要思路是在CT计算之前压缩CT-SI数据,并对压缩后的数据进行3D重建和化学成分分析。所提出的方法在不丢失有关3D结构和化学成分信息的情况下显著降低了计算成本。我们使用合成和真实的CT-XAFS数据对所提出的方法进行了实验评估,结果表明我们的方法在保持分析性能的同时,比传统方法实现了显著更快的计算速度。由于所提出的过程可以用任何CT算法实现,预计它将加速在有噪声和稀疏的CT-SI数据集中使用稀疏正则化CT算法进行的3D分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验