Suppr超能文献

用于实现对特别复杂的纳米材料系统进行光谱成像分析的机器学习方法。

Machine Learning Approach to Enable Spectral Imaging Analysis for Particularly Complex Nanomaterial Systems.

作者信息

Jia Haili, Wang Canhui, Wang Chao, Clancy Paulette

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland21218, United States.

Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, Maryland21218, United States.

出版信息

ACS Nano. 2023 Jan 10;17(1):453-460. doi: 10.1021/acsnano.2c08884. Epub 2022 Dec 20.

Abstract

Scanning transmission electron microscopy-based electron energy loss spectroscopy spectral imaging (STEM-EELS-SI) has been widely used in material research to capture a wealth of information, including elemental, electron density, and bonding state distributions. However, its exploitation still faces many challenges due to the difficulty of extracting information from noisy and overlapping edges in the convoluted spatial and spectroscopic data set. A traditional EELS spectral imaging analysis lacks the capability to isolate noise and deconvolute such overlapping edges, which either limits the resolution or the signal-to-noise ratio of the maps generated by EELS-SI. Existing machine learning (ML) algorithms can achieve denoising and deconvolution to a certain extent, but the extracted spectra lack physical meaning. To address these challenges, we have developed a ML method tailored to a spectral imaging analysis system and based on a non-negative robust principal component analysis. This approach offers an effective way to analyze EELS spectral images with improved space-time resolution, signal-to-noise ratio, and the capability to separate subtle differences in the spectrum. We apply this algorithm to 13 nanomaterial systems to show that ML can greatly improve image quality compared to a traditional approach, especially for more challenging systems. This will expand the type of nanomaterial systems that can be characterized by EELS-SI, and aid the analysis of structural, chemical, and electronic properties that are otherwise difficult to obtain.

摘要

基于扫描透射电子显微镜的电子能量损失谱光谱成像(STEM-EELS-SI)已在材料研究中广泛应用,以获取大量信息,包括元素分布、电子密度和键合态分布。然而,由于在复杂的空间和光谱数据集中难以从噪声和重叠边缘提取信息,其应用仍面临诸多挑战。传统的电子能量损失谱光谱成像分析缺乏分离噪声和对这种重叠边缘进行反卷积的能力,这限制了由EELS-SI生成的图谱的分辨率或信噪比。现有的机器学习(ML)算法可以在一定程度上实现去噪和反卷积,但提取的光谱缺乏物理意义。为应对这些挑战,我们开发了一种针对光谱成像分析系统并基于非负稳健主成分分析的机器学习方法。该方法为分析EELS光谱图像提供了一种有效的途径,具有提高的时空分辨率、信噪比以及分离光谱中细微差异的能力。我们将此算法应用于13个纳米材料系统,结果表明与传统方法相比,机器学习可以极大地提高图像质量,尤其是对于更具挑战性的系统。这将扩大可通过EELS-SI表征的纳米材料系统类型,并有助于分析原本难以获得的结构、化学和电子性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验