Bagdonaite Ieva, Abdurahman Samir, Mirandola Mattia, Pasqual Denis, Frank Martin, Narimatsu Yoshiki, Joshi Hiren J, Vakhrushev Sergey Y, Salata Cristiano, Mirazimi Ali, Wandall Hans H
Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
Public Health Agency of Sweden, Solna, Sweden.
J Virol. 2024 Jun 13;98(6):e0052424. doi: 10.1128/jvi.00524-24. Epub 2024 May 17.
Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting or as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.
埃博拉病毒糖蛋白(EBOV GP)是O-糖基化程度最高的病毒糖蛋白之一,但我们对其大的O-糖基化粘蛋白样结构域的结构以及宿主O-糖基化能力在多大程度上影响埃博拉病毒复制仍缺乏基本了解。我们使用串联质谱法鉴定了EBOV GP上的47个O-糖基化位点,并在病毒样颗粒和细胞裂解物来源的GP上发现了相似的糖基化特征。此外,我们对野生型HEK293细胞以及缺失O-连接糖基化的三个关键起始酶GalNAc-T1、-T2和-T3的细胞系中产生的蛋白质进行了定量差异O-糖蛋白质组学分析。数据表明,47个O-糖基化位点中有12个受调控,主要受GalNAc-T1调控。利用糖基工程细胞系进行真正的埃博拉病毒繁殖,我们证明了O-连接聚糖的起始和延伸对于病毒颗粒的产生和子代病毒滴度的重要性。绘制的O-聚糖位置和结构使得能够生成分子动力学模拟,以探究粘蛋白样结构域在很大程度上未知的空间排列。这些数据突出了靶向或作为调节EBOV GP上O-聚糖密度的一种可能方式,用于新型疫苗设计和定制干预方法。
重要性
埃博拉病毒糖蛋白在宿主细胞中获得其广泛的聚糖屏障,在那里它被N-连接聚糖和粘蛋白型O-连接聚糖修饰。后者由一组多肽GalNAc转移酶起始,这些酶对最佳肽底物有不同的偏好,导致每种同工型都有一系列非常选择性和冗余的底物。在这项工作中,我们绘制了埃博拉病毒糖蛋白上O-聚糖的确切位置,并鉴定了优先由GalNAc-Ts的三种关键同工型之一起始的位点子集,表明每种酶都有助于聚糖屏障的完整性。我们进一步表明,改变宿主O-糖基化能力对埃博拉病毒复制有不利影响,同工型特异性起始和延伸都起作用。综合的结构和功能数据突出了糖基工程细胞系作为研究特定聚糖施加的分子机制以及在未来疫苗设计中引导免疫反应的有用工具。