Suppr超能文献

估计等位基因频率的特定尺度和局部空间模式。

Estimating scale-specific and localized spatial patterns in allele frequency.

机构信息

Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.

Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Genetics. 2024 Jul 8;227(3). doi: 10.1093/genetics/iyae082.

Abstract

Characterizing spatial patterns in allele frequencies is fundamental to evolutionary biology because these patterns contain evidence of underlying processes. However, the spatial scales at which gene flow, changing selection, and drift act are often unknown. Many of these processes can operate inconsistently across space, causing nonstationary patterns. We present a wavelet approach to characterize spatial pattern in allele frequency that helps solve these problems. We show how our approach can characterize spatial patterns in relatedness at multiple spatial scales, i.e. a multilocus wavelet genetic dissimilarity. We also develop wavelet tests of spatial differentiation in allele frequency and quantitative trait loci (QTL). With simulation, we illustrate these methods under different scenarios. We also apply our approach to natural populations of Arabidopsis thaliana to characterize population structure and identify locally adapted loci across scales. We find, for example, that Arabidopsis flowering time QTL show significantly elevated genetic differentiation at 300-1,300 km scales. Wavelet transforms of allele frequencies offer a flexible way to reveal geographic patterns and underlying evolutionary processes.

摘要

描述等位基因频率的空间模式是进化生物学的基础,因为这些模式包含了潜在过程的证据。然而,基因流动、不断变化的选择和漂变作用的空间尺度通常是未知的。这些过程中的许多过程在空间上不一致,导致非平稳模式。我们提出了一种基于小波的方法来描述等位基因频率的空间模式,有助于解决这些问题。我们展示了我们的方法如何在多个空间尺度上描述亲缘关系的空间模式,即多基因小波遗传差异。我们还开发了用于等位基因频率和数量性状基因座(QTL)的空间分化的小波检验。通过模拟,我们在不同的场景下说明了这些方法。我们还将我们的方法应用于拟南芥的自然种群,以描述种群结构并在多个尺度上识别局部适应的基因座。例如,我们发现拟南芥开花时间 QTL 在 300-1300 公里的尺度上显示出显著升高的遗传分化。等位基因频率的小波变换提供了一种灵活的方法来揭示地理模式和潜在的进化过程。

相似文献

1
Estimating scale-specific and localized spatial patterns in allele frequency.
Genetics. 2024 Jul 8;227(3). doi: 10.1093/genetics/iyae082.
3
Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.
Mol Ecol. 2014 Sep;23(17):4291-303. doi: 10.1111/mec.12857. Epub 2014 Aug 12.
4
Polygenic adaptation: From sweeps to subtle frequency shifts.
PLoS Genet. 2019 Mar 20;15(3):e1008035. doi: 10.1371/journal.pgen.1008035. eCollection 2019 Mar.
5
Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis.
Mol Ecol. 2011 Apr;20(8):1582-600. doi: 10.1111/j.1365-294X.2011.05025.x. Epub 2011 Feb 17.
6
Genetic architecture of a selection response in Arabidopsis thaliana.
Evolution. 2003 Nov;57(11):2531-9. doi: 10.1111/j.0014-3820.2003.tb01497.x.
7
The genetic differentiation at quantitative trait loci under local adaptation.
Mol Ecol. 2012 Apr;21(7):1548-66. doi: 10.1111/j.1365-294X.2012.05479.x. Epub 2012 Feb 14.
8
Temporal changes in allele frequencies in two European F(2) flint maize populations under modified recurrent full-sib selection.
Theor Appl Genet. 2007 Mar;114(5):765-76. doi: 10.1007/s00122-006-0443-7. Epub 2007 Feb 16.
9
Controlling for P-value inflation in allele frequency change in experimental evolution and artificial selection experiments.
Mol Ecol Resour. 2017 Jul;17(4):770-782. doi: 10.1111/1755-0998.12631. Epub 2016 Nov 25.
10
In the presence of population structure: From genomics to candidate genes underlying local adaptation.
Ecol Evol. 2020 Feb 12;10(4):1889-1904. doi: 10.1002/ece3.6002. eCollection 2020 Feb.

引用本文的文献

1
Environmental data provide marginal benefit for predicting climate adaptation.
PLoS Genet. 2025 Jun 9;21(6):e1011714. doi: 10.1371/journal.pgen.1011714. eCollection 2025 Jun.
3
Museum genomics reveals temporal genetic stasis and global genetic diversity in .
bioRxiv. 2025 Feb 7:2025.02.06.636844. doi: 10.1101/2025.02.06.636844.
4
Genetic variation in phenology of wild plants.
bioRxiv. 2024 Sep 3:2024.09.02.610887. doi: 10.1101/2024.09.02.610887.

本文引用的文献

1
The genomics and physiology of abiotic stressors associated with global elevational gradients in Arabidopsis thaliana.
New Phytol. 2024 Dec;244(5):2062-2077. doi: 10.1111/nph.20138. Epub 2024 Sep 22.
3
The temporal and genomic scale of selection following hybridization.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2309168121. doi: 10.1073/pnas.2309168121. Epub 2024 Mar 15.
4
Genotype-environment associations to reveal the molecular basis of environmental adaptation.
Plant Cell. 2023 Jan 2;35(1):125-138. doi: 10.1093/plcell/koac267.
6
7
Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data.
Genetics. 2020 May;215(1):193-214. doi: 10.1534/genetics.120.303143. Epub 2020 Mar 24.
8
Functional variants of control seed chilling responses and variation in seasonal life-history strategies in .
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2526-2534. doi: 10.1073/pnas.1912451117. Epub 2020 Jan 21.
9
Genetic Landscapes Reveal How Human Genetic Diversity Aligns with Geography.
Mol Biol Evol. 2020 Apr 1;37(4):943-951. doi: 10.1093/molbev/msz280.
10
Type-II Metacaspases Mediate the Processing of Plant Elicitor Peptides in Arabidopsis.
Mol Plant. 2019 Nov 4;12(11):1524-1533. doi: 10.1016/j.molp.2019.08.003. Epub 2019 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验