Li Forrest, Gates Daniel J, Buckler Edward S, Hufford Matthew B, Janzen Garrett M, Rellán-Álvarez Rubén, Rodríguez-Zapata Fausto, Romero Navarro J Alberto, Sawers Ruairidh J H, Snodgrass Samantha J, Sonder Kai, Willcox Martha C, Hearne Sarah J, Ross-Ibarra Jeffrey, Runcie Daniel E
Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America.
Department of Plant Sciences, University of California Davis, Davis, California, United States of America.
PLoS Genet. 2025 Jun 9;21(6):e1011714. doi: 10.1371/journal.pgen.1011714. eCollection 2025 Jun.
Climate change poses a major challenge for both natural and cultivated species. Genomic tools are increasingly used in both conservation and breeding to identify adaptive loci that can be used to guide management in future climates. Here, we study the utility of climate and genomic data for identifying promising alleles using common gardens of a large, geographically diverse sample of traditional maize varieties to evaluate multiple approaches. First, we used genotype data to predict environmental characteristics of germplasm collections to identify varieties that may be pre-adapted to target environments. Second, we used environmental GWAS (envGWAS) to identify loci associated with historical divergence along climatic gradients. Finally, we compared the value of environmental data and envGWAS-prioritized loci to genomic data for prioritizing traditional varieties. We find that maize yield traits are best predicted by genome-wide relatedness and population structure, and that incorporating envGWAS-identified variants or environment-of-origin data provide little additional predictive information. While our results suggest that environmental data provide limited benefit in predicting fitness-related phenotypes, environmental GWAS is nonetheless a potentially powerful approach to identify individual novel loci associated with adaptation, especially when coupled with high density genotyping.
气候变化对自然物种和栽培物种都构成了重大挑战。基因组工具在保护和育种中越来越多地被用于识别适应性位点,这些位点可用于指导未来气候条件下的管理。在此,我们利用一个来自地理上多样化的传统玉米品种大样本的共同园圃,研究气候和基因组数据在识别有前景的等位基因方面的效用,以评估多种方法。首先,我们使用基因型数据预测种质资源收集的环境特征,以识别可能预先适应目标环境的品种。其次,我们使用环境全基因组关联研究(envGWAS)来识别与沿气候梯度的历史分化相关的位点。最后,我们比较了环境数据和envGWAS优先排序的位点与基因组数据在对传统品种进行优先排序方面的价值。我们发现,玉米产量性状最好通过全基因组亲缘关系和群体结构来预测,纳入envGWAS识别的变异或起源环境数据几乎没有提供额外的预测信息。虽然我们的结果表明环境数据在预测与适应性相关的表型方面益处有限,但环境GWAS仍然是一种潜在的强大方法,可用于识别与适应性相关的单个新位点,特别是与高密度基因分型结合使用时。