Suppr超能文献

原子探针层析成像中的原位脉冲氢注入

In Situ Pulsed Hydrogen Implantation in Atom Probe Tomography.

作者信息

Maillet Jean-Baptiste, Da Costa Gerald, Klaes Benjamin, Bacchi Christian, Normand Antoine, Vaudaulon Charly, Vurpillot François

机构信息

Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, GPM UMR 6634, Av. de l'Université, 76800 Saint-Etienne-du-Rouvray, France.

出版信息

Microsc Microanal. 2025 Feb 3;30(6):1221-1236. doi: 10.1093/mam/ozae040.

Abstract

The investigation of hydrogen in atom probe tomography appears as a relevant challenge due to its low mass, high diffusion coefficient, and presence as a residual gas in vacuum chambers, resulting in multiple complications for atom probe studies. Different solutions were proposed in the literature like ex situ charging coupled with cryotransfer or H charging at high temperature in a separate chamber. Nevertheless, these solutions often faced challenges due to the complex control of specimen temperature during hydrogen charging and subsequent analysis. In this paper, we propose an alternative route for in situ H charging in atom probe derived from a method developed in field ion microscopy. By applying negative voltage nanosecond pulse on the specimen in an atom probe chamber under a low pressure of H2, it is demonstrated that a high dose of H can be implanted in the range 2-20 nm beneath the specimen surface. An atom probe chamber was modified to enable direct negative pulse application with controlled gas pressure, pulse repetition rate, and pulse amplitude. Through electrodynamical simulations, we show that the implantation energy falls within the range 100-1,000 eV and a theoretical depth of implantation was predicted and compared to experiments.

摘要

由于氢的质量低、扩散系数高且在真空腔中以残余气体形式存在,在原子探针断层扫描中对氢进行研究是一项颇具挑战性的任务,这给原子探针研究带来了诸多复杂问题。文献中提出了不同的解决方案,如异位充电结合低温传输或在单独腔室中高温下进行氢充电。然而,由于在氢充电及后续分析过程中对样品温度的复杂控制,这些解决方案常常面临挑战。在本文中,我们提出了一种源自场离子显微镜中所开发方法的原子探针原位氢充电的替代途径。通过在低压氢气环境下的原子探针腔室中对样品施加负电压纳秒脉冲,结果表明可以在样品表面下方2至20纳米范围内注入高剂量的氢。对原子探针腔室进行了改进,以实现具有可控气压、脉冲重复率和脉冲幅度的直接负脉冲施加。通过电动力学模拟,我们表明注入能量在100至1000电子伏特范围内,并预测了理论注入深度并与实验进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验