Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, United Kingdom.
J Am Chem Soc. 2024 May 29;146(21):14905-14914. doi: 10.1021/jacs.4c05220. Epub 2024 May 17.
The ability to harvest light effectively in a changing environment is necessary to ensure efficient photosynthesis and crop growth. One mechanism, known as qE, protects photosystem II (PSII) and regulates electron transfer through the harmless dissipation of excess absorbed photons as heat. This process involves reversible clustering of the major light-harvesting complexes of PSII (LHCII) in the thylakoid membrane and relies upon the ΔpH gradient and the allosteric modulator protein PsbS. To date, the exact role of PsbS in the qE mechanism has remained elusive. Here, we show that PsbS induces hydrophobic mismatch in the thylakoid membrane through dynamic rearrangement of lipids around LHCII leading to observed membrane thinning. We found that upon illumination, the thylakoid membrane reversibly shrinks from around 4.3 to 3.2 nm, without PsbS, this response is eliminated. Furthermore, we show that the lipid digalactosyldiacylglycerol (DGDG) is repelled from the LHCII-PsbS complex due to an increase in both the p of lumenal residues and in the dipole moment of LHCII, which allows for further conformational change and clustering in the membrane. Our results suggest a mechanistic role for PsbS as a facilitator of a hydrophobic mismatch-mediated phase transition between LHCII-PsbS and its environment. This could act as the driving force to sort LHCII into photoprotective nanodomains in the thylakoid membrane. This work shows an example of the key role of the hydrophobic mismatch process in regulating membrane protein function in plants.
有效地在不断变化的环境中收集光对于确保高效的光合作用和作物生长是必要的。一种称为 qE 的机制通过将过量吸收的光子无害地耗散为热能来保护光系统 II(PSII)并调节电子转移。该过程涉及 PSII 的主要光捕获复合物(LHCII)在类囊体膜中的可逆聚集,并且依赖于 ΔpH 梯度和变构调节剂蛋白 PsbS。迄今为止,PsbS 在 qE 机制中的确切作用仍然难以捉摸。在这里,我们表明 PsbS 通过 LHCII 周围脂质的动态重排诱导类囊体膜中的疏水性失配,从而导致观察到的膜变薄。我们发现,在光照下,类囊体膜可逆地从约 4.3nm 缩小到 3.2nm,如果没有 PsbS,这种响应就会消除。此外,我们表明由于腔室残基的 p 值和 LHCII 的偶极矩增加,二半乳糖基二酰基甘油(DGDG)被排斥出 LHCII-PsbS 复合物,这允许进一步的构象变化和在膜中的聚集。我们的结果表明 PsbS 作为 LHCII-PsbS 与其环境之间疏水性失配介导的相转变的促进剂的作用机制。这可以作为将 LHCII 分类到类囊体膜中光保护纳米域的驱动力。这项工作展示了疏水性失配过程在调节植物中膜蛋白功能方面的关键作用的一个例子。