Chen Lili, Rodriguez-Heredia Melvin, Hanke Guy T, Ruban Alexander V
School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
Plant Commun. 2025 Jan 13;6(1):101179. doi: 10.1016/j.xplc.2024.101179. Epub 2024 Oct 28.
For optimum photosynthetic productivity, it is crucial for plants to swiftly transition between light-harvesting and photoprotective states as light conditions change in the field. The PsbS protein plays a pivotal role in this process by switching the light-harvesting antenna, light-harvesting complex II (LHCII), into the photoprotective state, energy-dependent chlorophyll fluorescence quenching (qE), to avoid photoinhibition in high-light environments. However, the molecular mechanism by which PsbS acts upon LHCII has remained unclear. In our study, we identified the specific amino acid domains that are essential for PsbS function. Using amino-acid point mutagenesis of PsbS in vivo, we found that the activation of photoprotection involves dynamic changes in the oligomeric state and conformation of PsbS, with two residues, E67 and E173, playing a key role in this process. Further, the replacement of hydrophobic phenylalanine residues in transmembrane helixes II (F83, F84, F87) and IV (F191, F193, F194) with tyrosine revealed that phenylalanine localized in helix IV can play a significant role in hydrophobic interactions of PsbS with LHCII. Removal of the 3 helix (H3) amino acids I74, Y75, and E76 did not affect the amplitude but strongly delayed the recovery of qE in darkness. Moreover, an AI-assisted protein-folding evolutionary scale model approach (ESMFold) was adopted to intelligently manipulate protein functions in silico and thus streamline and evaluate experimental point mutagenesis strategies. This provides new insights into the molecular architecture of PsbS that are essential for regulating light harvesting in higher plants.
为了实现最佳的光合生产力,随着田间光照条件的变化,植物在光捕获和光保护状态之间迅速转换至关重要。PsbS蛋白在这一过程中起着关键作用,它将光捕获天线——光捕获复合体II(LHCII)转换为光保护状态,即能量依赖的叶绿素荧光猝灭(qE),以避免在高光环境下发生光抑制。然而,PsbS作用于LHCII的分子机制仍不清楚。在我们的研究中,我们确定了PsbS功能所必需的特定氨基酸结构域。通过在体内对PsbS进行氨基酸点突变,我们发现光保护的激活涉及PsbS寡聚状态和构象的动态变化,其中两个残基E67和E173在此过程中起关键作用。此外,用酪氨酸取代跨膜螺旋II(F83、F84、F87)和IV(F191、F193、F194)中的疏水性苯丙氨酸残基表明,位于螺旋IV中的苯丙氨酸在PsbS与LHCII的疏水相互作用中可发挥重要作用。去除3螺旋(H3)的氨基酸I74、Y75和E76不影响qE的幅度,但强烈延迟了黑暗中qE的恢复。此外,采用人工智能辅助的蛋白质折叠进化尺度模型方法(ESMFold)在计算机上智能操纵蛋白质功能,从而简化和评估实验点突变策略。这为PsbS的分子结构提供了新的见解,而PsbS的分子结构对于调节高等植物的光捕获至关重要。