Suppr超能文献

处于光活跃和光保护状态的 LHCII 的低温电镜结构揭示了光能捕获和过剩能量耗散的变构调节。

Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation.

机构信息

Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Plants. 2023 Sep;9(9):1547-1557. doi: 10.1038/s41477-023-01500-2. Epub 2023 Aug 31.

Abstract

The major light-harvesting complex of photosystem II (LHCII) has a dual regulatory function in a process called non-photochemical quenching to avoid the formation of reactive oxygen. LHCII undergoes reversible conformation transitions to switch between a light-harvesting state for excited-state energy transfer and an energy-quenching state for dissipating excess energy under full sunshine. Here we report cryo-electron microscopy structures of LHCII in membrane nanodiscs, which mimic in vivo LHCII, and in detergent solution at pH 7.8 and 5.4, respectively. We found that, under low pH conditions, the salt bridges at the lumenal side of LHCII are broken, accompanied by the formation of two local α-helices on the lumen side. The formation of α-helices in turn triggers allosterically global protein conformational change, resulting in a smaller crossing angle between transmembrane helices. The fluorescence decay rates corresponding to different conformational states follow the Dexter energy transfer mechanism with a characteristic transition distance of 5.6 Å between Lut1 and Chl612. The experimental observations are consistent with the computed electronic coupling strengths using multistate density function theory.

摘要

光系统 II(PSII)的主要光捕获复合物(LHCII)在一个称为非光化学猝灭的过程中具有双重调节功能,以避免活性氧的形成。LHCII 经历可逆构象转变,在全阳光下在用于激发态能量转移的光捕获状态和用于耗散多余能量的能量猝灭状态之间切换。在这里,我们报告了在膜纳米盘(模拟体内 LHCII)和在 pH 值分别为 7.8 和 5.4 的去污剂溶液中 LHCII 的冷冻电子显微镜结构。我们发现,在低 pH 条件下,LHCII 内腔侧的盐桥被打破,同时在内腔侧形成两个局部α-螺旋。α-螺旋的形成反过来触发全局蛋白质构象的变构变化,导致跨膜螺旋之间的交叉角度变小。与不同构象状态对应的荧光衰减速率遵循 Dexter 能量转移机制,Lut1 和 Chl612 之间的特征跃迁距离为 5.6 Å。实验观察结果与使用多态密度泛函理论计算的电子耦合强度一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验