Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile.
Sci Total Environ. 2024 Jul 15;934:173236. doi: 10.1016/j.scitotenv.2024.173236. Epub 2024 May 17.
During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 μg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.
在塑料废弃物降解为微/纳米塑料(MNPLs)的过程中,其物理化学特性,包括表面特性(电荷、功能化、生物冠等)可能会发生变化,从而潜在影响它们的生物效应。本文重点研究了 MNPLs 的表面功能化,以确定其是否直接影响不同暴露时间下人脐静脉内皮细胞(HUVECs)中的毒代动力学和毒效动力学相互作用。本文使用了原始聚苯乙烯纳米塑料(PS-NPLs)及其羧基化(PS-C-NPLs)和氨基化(PS-A-NPLs)形式,粒径均约为 50nm,进行了广泛的毒理学检测。这些检测包括细胞活力、细胞内化、细胞内活性氧物种(iROS)诱导和遗传毒性评估。实验在 100μg/mL 的浓度下进行,该浓度选择既能确保所有处理的高内化率,又能保持亚毒性浓度。结果表明,所有 PS-NPLs 都被 HUVECs 内化,但内化动力学取决于颗粒的功能化。PS-NPLs 和 PS-C-NPLs 的内化会改变细胞的形态,增加其内部复杂性/颗粒度。关于细胞毒性,只有 PS-A-NPLs 降低了细胞活力。三种不同的 PS-NPLs 都能诱导细胞内 ROS,但诱导时间不同。三种 PS-NPLs 在短时间暴露(2h)下会引起遗传毒性损伤,但 PS-C-NPLs 在 24h 时则不会。总的来说,本研究表明 PSNPLs 对 HUVEC 细胞的毒性作用是表面依赖性的,突出了使用人源原代细胞作为靶标的重要性。
Nanomaterials (Basel). 2025-7-4
J Expo Sci Environ Epidemiol. 2025-4-1