Villacorta Aliro, Morataya-Reyes Michelle, Vela Lourdes, Arribas Arranz Jéssica, Martín-Perez Joan, Barguilla Irene, Marcos Ricard, Hernández Alba
Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique 101000, Chile.
Nanomaterials (Basel). 2025 Jul 4;15(13):1040. doi: 10.3390/nano15131040.
In the environment, plastic waste degrades into small particles known as microplastics and nanoplastics (MNPLs), depending on their size. Given the potential harmful effects associated with MNPL exposure, it is crucial to develop environmentally representative particles for hazard assessment. These so-called true-to-life MNPLs are generated through in-house degradation of real-world plastic products. In this study, we produced titanium-doped nanoplastics (NPLs) from opaque polyethylene terephthalate (PET) milk bottles, which contain titanium dioxide as a filler. The resulting PET(Ti)-NPLs were thoroughly characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), mass spectrometry (MS), dynamic light scattering (DLS), ζ-potential measurements, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Human-derived THP-1 monocytes were employed to investigate particle uptake kinetics, dosimetry, and genotoxicity. A combination of flow cytometry and inductively coupled plasma mass spectrometry (ICP-MS) enabled the quantification of internalized particles, while the comet assay assessed DNA damage. The results revealed dose- and time-dependent effects of PET(Ti)-NPLs on THP-1 cells, particularly in terms of internalization. Titanium doping facilitated detection and influenced genotoxic outcomes. This study demonstrates the relevance of using environmentally representative nanoplastic models for evaluating human health risks and underscores the importance of further mechanistic research.
在环境中,塑料垃圾会根据其大小降解为称为微塑料和纳米塑料(MNPLs)的小颗粒。鉴于与MNPL暴露相关的潜在有害影响,开发具有环境代表性的颗粒用于危害评估至关重要。这些所谓的逼真MNPLs是通过对实际塑料制品进行内部降解而产生的。在本研究中,我们从含有二氧化钛作为填料的不透明聚对苯二甲酸乙二醇酯(PET)牛奶瓶中制备了掺钛纳米塑料(NPLs)。使用扫描电子显微镜(SEM)、能量色散X射线光谱(EDS)、质谱(MS)、动态光散射(DLS)、ζ电位测量、透射电子显微镜(TEM)和傅里叶变换红外(FTIR)光谱对所得的PET(Ti)-NPLs进行了全面表征。用人源THP-1单核细胞研究颗粒摄取动力学、剂量学和遗传毒性。流式细胞术和电感耦合等离子体质谱(ICP-MS)的结合能够对内化颗粒进行定量,而彗星试验则评估DNA损伤。结果显示PET(Ti)-NPLs对THP-1细胞有剂量和时间依赖性影响,特别是在内化方面。钛掺杂有助于检测并影响遗传毒性结果。本研究证明了使用具有环境代表性的纳米塑料模型评估人类健康风险的相关性,并强调了进一步进行机理研究的重要性。