Suppr超能文献

基于纵向人工智能的深度学习模型,用于诊断和预测糖尿病和糖尿病前期多发性神经病的未来发生情况。

Longitudinal artificial intelligence-based deep learning models for diagnosis and prediction of the future occurrence of polyneuropathy in diabetes and prediabetes.

机构信息

Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Hyperbaric Oxygen Therapy Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.

Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.

出版信息

Neurophysiol Clin. 2024 Jul;54(4):102982. doi: 10.1016/j.neucli.2024.102982. Epub 2024 May 18.

Abstract

OBJECTIVE

The objective of this study was to develop artificial intelligence-based deep learning models and assess their potential utility and accuracy in diagnosing and predicting the future occurrence of diabetic distal sensorimotor polyneuropathy (DSPN) among individuals with type 2 diabetes mellitus (T2DM) and prediabetes.

METHODS

In 394 patients (T2DM=300, Prediabetes=94), we developed a DSPN diagnostic and predictive model using Random Forest (RF)-based variable selection techniques, specifically incorporating the combined capabilities of the Clinical Toronto Neuropathy Score (TCNS) and nerve conduction study (NCS) to identify relevant variables. These important variables were then integrated into a deep learning framework comprising Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. To evaluate temporal predictive efficacy, patients were assessed at enrollment and one-year follow-up.

RESULTS

RF-based variable selection identified key factors for diagnosing DSPN. Numbness scores, sensory test results (vibration), reflexes (knee, ankle), sural nerve attributes (sensory nerve action potential [SNAP] amplitude, nerve conduction velocity [NCV], latency), and peroneal/tibial motor NCV were candidate variables at baseline and over one year. Tibial compound motor action potential amplitudes were used for initial diagnosis, and ulnar SNAP amplitude for subsequent diagnoses. CNNs and LSTMs achieved impressive AUC values of 0.98 for DSPN diagnosis prediction, and 0.93 and 0.89 respectively for predicting the future occurrence of DSPN. RF techniques combined with two deep learning algorithms exhibited outstanding performance in diagnosing and predicting the future occurrence of DSPN. These algorithms have the potential to serve as surrogate measures, aiding clinicians in accurate diagnosis and future prediction of DSPN.

摘要

目的

本研究旨在开发基于人工智能的深度学习模型,并评估其在诊断和预测 2 型糖尿病(T2DM)和糖尿病前期个体发生糖尿病远端感觉运动多发性神经病(DSPN)中的潜在效用和准确性。

方法

在 394 名患者(T2DM=300,糖尿病前期=94)中,我们使用随机森林(RF)变量选择技术开发了 DSPN 诊断和预测模型,具体方法是将临床多伦多神经病变评分(TCNS)和神经传导研究(NCS)的综合能力相结合,以识别相关变量。然后,这些重要变量被整合到一个由卷积神经网络(CNNs)和长短期记忆(LSTM)网络组成的深度学习框架中。为了评估时间预测效果,患者在入组时和一年后进行评估。

结果

基于 RF 的变量选择确定了诊断 DSPN 的关键因素。麻木评分、感觉测试结果(振动)、反射(膝、踝)、腓肠神经属性(感觉神经动作电位[SNAP]幅度、神经传导速度[NCV]、潜伏期)和腓肠/胫神经运动 NCV 是基线和一年后候选变量。胫骨复合运动神经动作电位幅度用于初始诊断,而尺神经 SNAP 幅度用于后续诊断。CNN 和 LSTM 分别实现了 0.98 的出色 AUC 值,用于 DSPN 诊断预测,以及 0.93 和 0.89 分别用于预测 DSPN 的未来发生。RF 技术与两种深度学习算法相结合,在诊断和预测 DSPN 的未来发生方面表现出色。这些算法有可能成为替代指标,帮助临床医生进行准确的 DSPN 诊断和未来预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验