Suppr超能文献

基于神经传导研究的常规机器学习算法对糖尿病感觉运动多发性神经病严重程度分类的性能分析。

Performance Analysis of Conventional Machine Learning Algorithms for Diabetic Sensorimotor Polyneuropathy Severity Classification Using Nerve Conduction Studies.

机构信息

Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.

Department of Electrical Engineering, Qatar University, Doha 2713, Qatar.

出版信息

Comput Intell Neurosci. 2022 Apr 25;2022:9690940. doi: 10.1155/2022/9690940. eCollection 2022.

Abstract

BACKGROUND

Diabetic sensorimotor polyneuropathy (DSPN) is a major form of complication that arises in long-term diabetic patients. Even though the application of machine learning (ML) in disease diagnosis is very common and well-established in the field of research, its application in DSPN diagnosis using nerve conduction studies (NCS), is very limited in the existing literature.

METHOD

In this study, the NCS data were collected from the Diabetes Control and Complications Trial (DCCT) and its follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. The NCS variables are median motor velocity (m/sec), median motor amplitude (mV), median motor F-wave (msec), median sensory velocity (m/sec), median sensory amplitude (V), Peroneal Motor Velocity (m/sec), peroneal motor amplitude (mv), peroneal motor F-wave (msec), sural sensory velocity (m/sec), and sural sensory amplitude (V). Three different feature ranking techniques were used to analyze the performance of eight different conventional classifiers.

RESULTS

The ensemble classifier outperformed other classifiers for the NCS data ranked when all the NCS features were used and provided an accuracy of 93.40%, sensitivity of 91.77%, and specificity of 98.44%. The random forest model exhibited the second-best performance using all the ten features with an accuracy of 93.26%, sensitivity of 91.95%, and specificity of 98.95%. Both ensemble and random forest showed the kappa value 0.82, which indicates that the models are in good agreement with the data and the variables used and are accurate to identify DSPN using these ML models.

CONCLUSION

This study suggests that the ensemble classifier using all the ten NCS variables can predict the DSPN severity which can enhance the management of DSPN patients.

摘要

背景

糖尿病周围感觉运动神经病变(DSPN)是长期糖尿病患者的主要并发症之一。尽管机器学习(ML)在疾病诊断中的应用在研究领域非常普遍且成熟,但在使用神经传导研究(NCS)进行 DSPN 诊断方面,其应用在现有文献中非常有限。

方法

本研究从糖尿病控制与并发症试验(DCCT)及其后续的糖尿病干预与并发症流行病学(EDIC)临床试验中收集了 NCS 数据。NCS 变量包括正中神经运动速度(m/sec)、正中神经运动幅度(mV)、正中神经 F 波(msec)、正中神经感觉速度(m/sec)、正中神经感觉幅度(V)、腓总神经运动速度(m/sec)、腓总神经运动幅度(mV)、腓总神经 F 波(msec)、腓肠神经感觉速度(m/sec)和腓肠神经感觉幅度(V)。使用三种不同的特征排序技术分析了八种不同传统分类器的性能。

结果

当使用所有 NCS 特征对 NCS 数据进行排序时,集成分类器的表现优于其他分类器,准确率为 93.40%,灵敏度为 91.77%,特异性为 98.44%。使用所有十个特征的随机森林模型表现第二好,准确率为 93.26%,灵敏度为 91.95%,特异性为 98.95%。集成和随机森林都显示出 kappa 值为 0.82,这表明模型与数据和使用的变量非常吻合,并且这些 ML 模型能够准确识别 DSPN。

结论

本研究表明,使用所有十个 NCS 变量的集成分类器可以预测 DSPN 的严重程度,从而可以增强 DSPN 患者的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f7f/9061035/fc33a6efbd0e/CIN2022-9690940.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验