Ben Moshe Tomer, Ziv Ido, Dershowitz Nachum, Bar Kfir
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
Behavioral Sciences, Netanya Academic College, Netanya, Israel.
Schizophrenia (Heidelb). 2024 May 18;10(1):53. doi: 10.1038/s41537-024-00463-3.
We show how acoustic prosodic features, such as pitch and gaps, can be used computationally for detecting symptoms of schizophrenia from a single spoken response. We compare the individual contributions of acoustic and previously-employed text modalities to the algorithmic determination whether the speaker has schizophrenia. Our classification results clearly show that we can extract relevant acoustic features better than those textual ones. We find that, when combined with those acoustic features, textual features improve classification only slightly.
我们展示了如何通过计算利用音高和停顿等声学韵律特征,从单个口语回答中检测精神分裂症的症状。我们比较了声学模态和先前使用的文本模态对判断说话者是否患有精神分裂症的算法贡献。我们的分类结果清楚地表明,我们能够比文本特征更好地提取相关声学特征。我们发现,与这些声学特征相结合时,文本特征对分类的改善仅略有提升。