Suppr超能文献

分析自由言语中的声学和韵律波动以预测高危青少年的精神病发作。

Analyzing acoustic and prosodic fluctuations in free speech to predict psychosis onset in high-risk youths.

作者信息

Agurto Carla, Pietrowicz Mary, Norel Raquel, Eyigoz Elif K, Stanislawski Emma, Cecchi Guillermo, Corcoran Cheryl

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5575-5579. doi: 10.1109/EMBC44109.2020.9176841.

Abstract

The diagnosis and treatment of psychiatric disorders depends on the analysis of behavior through language by a clinical specialist. This analysis is subjective in nature and could benefit from automated, objective acoustic and linguistic processing methods. This integrated approach would convey a richer representation of patient speech, particularly for expression of emotion. In this work, we explore the potential of acoustic and prosodic metrics to infer clinical variables and predict psychosis, a condition which produces measurable derailment and tangentiality in patient language. To that purpose, we analyzed the recordings of 32 young patients at high risk of developing clinical psychosis. The subjects were evaluated using the Structured Interview for Prodromal Syndromes/Scale of Prodromal Symptoms (SIPS/SOPS) criteria. To analyze the recordings, we examined the variation of different acoustic and prosodic metrics across time. This preliminary analysis shows that these features can infer negative symptom severity ratings (i.e., SIPS-Btotal), obtaining a Pearson correlation of 0.77 for all the subjects after cross-validated evaluation. In addition, these features can predict development of psychosis with high accuracy above 90%, outperforming classification using clinical variables only. This improved predictive power ultimately can help provide early treatment and improve quality of life for those at risk for developing psychosis.

摘要

精神疾病的诊断和治疗依赖于临床专家通过语言对行为进行分析。这种分析本质上是主观的,可能会受益于自动化、客观的声学和语言处理方法。这种综合方法将传达更丰富的患者言语表现,特别是对于情感表达。在这项工作中,我们探索声学和韵律指标推断临床变量以及预测精神病的潜力,精神病会导致患者语言出现可测量的思维紊乱和离题。为此,我们分析了32名有临床精神病高风险的年轻患者的录音。使用前驱综合征结构化访谈/前驱症状量表(SIPS/SOPS)标准对受试者进行评估。为了分析录音,我们检查了不同声学和韵律指标随时间的变化。这项初步分析表明,这些特征可以推断阴性症状严重程度评分(即SIPS - Btotal),交叉验证评估后所有受试者的皮尔逊相关系数为0.77。此外,这些特征可以以高于90%的准确率预测精神病的发展,优于仅使用临床变量的分类方法。这种提高的预测能力最终有助于为有患精神病风险的人提供早期治疗并改善生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验