Sun Zhenyu, Su Yueqi, Zhi Aomiao, Gao Zhicheng, Han Xu, Wu Kang, Bao Lihong, Huang Yuan, Shi Youguo, Bai Xuedong, Cheng Peng, Chen Lan, Wu Kehui, Tian Xuezeng, Wu Changzheng, Feng Baojie
Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Nat Commun. 2024 May 18;15(1):4252. doi: 10.1038/s41467-024-48636-z.
Multiferroic materials, which simultaneously exhibit ferroelectricity and magnetism, have attracted substantial attention due to their fascinating physical properties and potential technological applications. With the trends towards device miniaturization, there is an increasing demand for the persistence of multiferroicity in single-layer materials at elevated temperatures. Here, we report high-temperature multiferroicity in single-layer CuCrSe, which hosts room-temperature ferroelectricity and 120 K ferromagnetism. Notably, the ferromagnetic coupling in single-layer CuCrSe is enhanced by the ferroelectricity-induced orbital shift of Cr atoms, which is distinct from both types I and II multiferroicity. These findings are supported by a combination of second-harmonic generation, piezo-response force microscopy, scanning transmission electron microscopy, magnetic, and Hall measurements. Our research provides not only an exemplary platform for delving into intrinsic magnetoelectric interactions at the single-layer limit but also sheds light on potential development of electronic and spintronic devices utilizing two-dimensional multiferroics.
同时表现出铁电性和磁性的多铁性材料,因其迷人的物理特性和潜在的技术应用而备受关注。随着器件小型化的趋势,对单层材料在高温下保持多铁性的需求日益增加。在此,我们报道了单层CuCrSe中的高温多铁性,该材料具有室温铁电性和120 K铁磁性。值得注意的是,单层CuCrSe中的铁磁耦合通过铁电诱导的Cr原子轨道位移而增强,这与I型和II型多铁性均不同。这些发现得到了二次谐波产生、压电响应力显微镜、扫描透射电子显微镜、磁性和霍尔测量的综合支持。我们的研究不仅为在单层极限下深入研究本征磁电相互作用提供了一个示例性平台,也为利用二维多铁性材料的电子和自旋电子器件的潜在发展提供了启示。