Zhou Song, Liao Lei, Chen Lan, Feng Baojie, He Xiaoyue, Bai Xuedong, Song Chuangye, Wu Kehui
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Nano Lett. 2023 Sep 13;23(17):7838-7844. doi: 10.1021/acs.nanolett.3c01426. Epub 2023 Aug 17.
Retaining ferroelectricity in ultrathin films or nanostructures is crucial for miniaturizing ferroelectric devices, but it is a challenging task due to intrinsic depolarization and size effects. In this study, we have shown that it is possible to stably maintain in-plane polarization in an extremely thin, one-unit-cell thick epitaxial BiWO film. The use of a perfectly lattice-matched NdGaO (110) substrate for the BiWO film minimizes strain and enhances stability. We attribute the residual polarization in this ultrathin film to the crystal stability of the Bi-O octahedral framework against structural distortions. Our findings suggest that ferroelectricity can surpass the critical thickness limit through proper strain engineering, and the BiWO/NdGaO (110) system presents a potential platform for designing low-energy consumption, nonvolatile ferroelectric memories.
在超薄薄膜或纳米结构中保持铁电性对于铁电器件的小型化至关重要,但由于固有去极化和尺寸效应,这是一项具有挑战性的任务。在本研究中,我们表明,在极薄的、一个晶胞厚的外延BiWO薄膜中稳定保持面内极化是可能的。为BiWO薄膜使用完美晶格匹配的NdGaO(110)衬底可使应变最小化并提高稳定性。我们将这种超薄薄膜中的剩余极化归因于Bi-O八面体框架对结构畸变的晶体稳定性。我们的研究结果表明,通过适当的应变工程,铁电性可以超越临界厚度限制,并且BiWO/NdGaO(110)系统为设计低能耗、非易失性铁电存储器提供了一个潜在平台。