Cai Chuanyang, Wen Yao, Yin Lei, Cheng Ruiqing, Wang Hao, Feng Xiaoqiang, Liu Liang, Jiang Chao, He Jun
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan, 430072, China.
School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China.
Nat Commun. 2025 Jul 23;16(1):6797. doi: 10.1038/s41467-025-62159-1.
Van der Waals multiferroic structures hold promises for advancing the development of low-power multifunctional nanoelectronics devices, but single-phase two-dimensional multiferroic materials are limited. In this study, we constructed a room-temperature P(VDF-TrFE)/FeGaTe heterostructure (ferromagnetic layer thickness of 4.8 nm). and demonstrate significant bidirectional modulation of the Curie temperature upon application of ±90 V. Specifically, the Curie temperature decreased from 326 K to 247 K under +90 V and increased to 366 K under -90 V. Notably, we observed layer-dependent magnetic modulation, In 3-layer FeGaTe, transitioning from negative to positive polarization increases Curie temperature, while thicker configurations show a decrease. This phenomenon originates from the competition between interlayer/intralayer magnetic exchange coupling driven by the electric field (density functional theory calculations), supporting non-volatile switching of the magnetization state, which is suitable for high-precision neural network computing. This discovery provides an innovative approach for developing low-power multifunctional nanoelectronics devices using two-dimensional magnetoelectric coupling structures.
范德华多铁性结构有望推动低功耗多功能纳米电子器件的发展,但单相二维多铁性材料却十分有限。在本研究中,我们构建了一种室温下的P(VDF-TrFE)/FeGaTe异质结构(铁磁层厚度为4.8纳米),并证明在施加±90伏电压时居里温度会出现显著的双向调制。具体而言,在+90伏电压下居里温度从326开尔文降至247开尔文,在 -90伏电压下则升至366开尔文。值得注意的是,我们观察到了层依赖的磁调制现象,在三层FeGaTe中,从负极化转变为正极化会使居里温度升高,而更厚的结构则显示出居里温度降低。这种现象源于电场驱动的层间/层内磁交换耦合之间的竞争(密度泛函理论计算),支持磁化状态的非易失性切换,这适用于高精度神经网络计算。这一发现为利用二维磁电耦合结构开发低功耗多功能纳米电子器件提供了一种创新方法。