Ontario Brain Institute, Toronto, Canada.
Peter Munk Cardiac Centre and Heart and Stroke Richard Lewar Centre, University of Toronto, Toronto, Canada.
Sci Rep. 2024 May 20;14(1):11437. doi: 10.1038/s41598-024-61721-z.
This study shows that we can use synthetic cohorts created from medical risk calculators to gain insights into how risk estimations, clinical reasoning, data-driven subgrouping, and the confidence in risk calculator scores are connected. When prediction variables aren't evenly distributed in these synthetic cohorts, they can be used to group similar cases together, revealing new insights about how cohorts behave. We also found that the confidence in predictions made by these calculators can vary depending on patient characteristics. This suggests that it might be beneficial to include a "normalized confidence" score in future versions of these calculators for healthcare professionals. We plan to explore this idea further in our upcoming research.
本研究表明,我们可以使用基于医疗风险计算器创建的合成队列,深入了解风险评估、临床推理、基于数据的亚组划分以及对风险计算器评分的信心之间的关系。当预测变量在这些合成队列中分布不均匀时,可以使用它们将相似的病例分组在一起,从而揭示有关队列行为的新见解。我们还发现,这些计算器的预测置信度可能因患者特征而异。这表明,在未来版本的这些计算器中包含“标准化置信度”评分可能对医疗保健专业人员有益。我们计划在即将进行的研究中进一步探讨这个想法。