Suppr超能文献

医疗保健中的合成数据:一篇叙述性综述。

Synthetic data in health care: A narrative review.

作者信息

Gonzales Aldren, Guruswamy Guruprabha, Smith Scott R

机构信息

Office of the Assistant Secretary Planning and Evaluation, US Department of Health and Human Services, Washington, District of Columbia, United States of America.

Department of Health Administration and Policy, George Mason University, Virginia, United States of America.

出版信息

PLOS Digit Health. 2023 Jan 6;2(1):e0000082. doi: 10.1371/journal.pdig.0000082. eCollection 2023 Jan.

Abstract

Data are central to research, public health, and in developing health information technology (IT) systems. Nevertheless, access to most data in health care is tightly controlled, which may limit innovation, development, and efficient implementation of new research, products, services, or systems. Using synthetic data is one of the many innovative ways that can allow organizations to share datasets with broader users. However, only a limited set of literature is available that explores its potentials and applications in health care. In this review paper, we examined existing literature to bridge the gap and highlight the utility of synthetic data in health care. We searched PubMed, Scopus, and Google Scholar to identify peer-reviewed articles, conference papers, reports, and thesis/dissertations articles related to the generation and use of synthetic datasets in health care. The review identified seven use cases of synthetic data in health care: a) simulation and prediction research, b) hypothesis, methods, and algorithm testing, c) epidemiology/public health research, d) health IT development, e) education and training, f) public release of datasets, and g) linking data. The review also identified readily and publicly accessible health care datasets, databases, and sandboxes containing synthetic data with varying degrees of utility for research, education, and software development. The review provided evidence that synthetic data are helpful in different aspects of health care and research. While the original real data remains the preferred choice, synthetic data hold possibilities in bridging data access gaps in research and evidence-based policymaking.

摘要

数据对于研究、公共卫生以及健康信息技术(IT)系统的开发至关重要。然而,医疗保健领域中大多数数据的访问受到严格控制,这可能会限制新研究、产品、服务或系统的创新、开发和有效实施。使用合成数据是众多创新方式之一,可使组织与更广泛的用户共享数据集。然而,探讨其在医疗保健领域的潜力和应用的文献有限。在这篇综述论文中,我们研究了现有文献以弥合差距,并突出合成数据在医疗保健中的实用性。我们检索了PubMed、Scopus和谷歌学术,以识别与医疗保健中合成数据集的生成和使用相关的同行评审文章、会议论文、报告以及论文/学位论文。该综述确定了合成数据在医疗保健中的七个用例:a)模拟和预测研究,b)假设、方法和算法测试,c)流行病学/公共卫生研究,d)健康IT开发,e)教育和培训,f)数据集的公开发布,以及g)数据链接。该综述还确定了易于获取且公开可用的医疗保健数据集、数据库和沙盒,其中包含对研究、教育和软件开发具有不同程度实用性的合成数据。该综述提供了证据表明合成数据在医疗保健和研究的不同方面都有帮助。虽然原始真实数据仍然是首选,但合成数据在弥合研究和循证决策中的数据访问差距方面具有潜力。

相似文献

1
Synthetic data in health care: A narrative review.医疗保健中的合成数据:一篇叙述性综述。
PLOS Digit Health. 2023 Jan 6;2(1):e0000082. doi: 10.1371/journal.pdig.0000082. eCollection 2023 Jan.
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
7
A framework and methodology for navigating disaster and global health in crisis literature.危机文献中应对灾难与全球健康的框架及方法
PLoS Curr. 2013 Apr 4;5:ecurrents.dis.9af6948e381dafdd3e877c441527cba0. doi: 10.1371/currents.dis.9af6948e381dafdd3e877c441527cba0.

引用本文的文献

5
Synthetic data in medicine: Legal and ethical considerations for patient profiling.医学中的合成数据:患者画像的法律和伦理考量
Comput Struct Biotechnol J. 2025 May 29;28:190-198. doi: 10.1016/j.csbj.2025.05.026. eCollection 2025.

本文引用的文献

3
Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images.利用深度学习生成合成B模式肌肉骨骼超声图像。
Comput Methods Programs Biomed. 2020 Nov;196:105583. doi: 10.1016/j.cmpb.2020.105583. Epub 2020 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验