Genreith-Schriever Annalena R, Coates Chloe S, Märker Katharina, Seymour Ieuan D, Bassey Euan N, Grey Clare P
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
The Faraday Institution, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
Chem Mater. 2024 Apr 24;36(9):4226-4239. doi: 10.1021/acs.chemmater.3c03103. eCollection 2024 May 14.
The long- and local-range structure and electronic properties of the high-voltage lithium-ion cathode material for Li-ion batteries, LiNiO, remain widely debated, as are the degradation phenomena at high states of delithiation, limiting the more widespread use of this material. In particular, the local structural environment and the role of Jahn-Teller distortions are unclear, as are the interplay of distortions and point defects and their influence on cycling behavior. Here, we use Li NMR measurements in combination with density functional theory (DFT) calculations to examine Jahn-Teller distortions and antisite defects in LiNiO. We calculate the Li Fermi contact shifts for the Jahn-Teller distorted and undistorted structures, the experimental Li room-temperature spectrum being ascribed to an appropriately weighted time average of the rapidly fluctuating structure comprising collinear, zigzag, and undistorted domains. The Li NMR spectra are sensitive to the nature and distribution of antisite defects, and in combination with DFT calculations of different configurations, we show that the Li resonance at approximately -87 ppm is characteristic of a subset of Li-Ni antisite defects, and more specifically, a Li ion in the Ni layer that does not have an associated Ni ion in the Li layer in its 2nd cation coordination shell. Li MAS NMR, X-ray diffraction, and electrochemical experiments, we identify the Li spectral signatures of the different crystallographic phases on delithiation. The results imply fast Li-ion dynamics in the monoclinic phase and indicate that the hexagonal H3 phase near the end of charge is largely devoid of Li.
锂离子电池高压正极材料LiNiO的长程和局域结构及电子性质仍存在广泛争议,在高脱锂状态下的降解现象也是如此,这限制了该材料更广泛的应用。特别是,局部结构环境以及 Jahn-Teller 畸变的作用尚不清楚,畸变与点缺陷之间的相互作用及其对循环行为的影响也不明确。在此,我们结合锂核磁共振(Li NMR)测量与密度泛函理论(DFT)计算,来研究LiNiO中的 Jahn-Teller 畸变和反位缺陷。我们计算了 Jahn-Teller 畸变和未畸变结构的锂费米接触位移,实验测得的锂室温谱归因于由共线、锯齿形和未畸变畴组成的快速波动结构的适当加权时间平均值。锂核磁共振谱对反位缺陷的性质和分布敏感,结合不同构型的DFT计算,我们表明约-87 ppm处的锂共振是Li-Ni反位缺陷子集的特征,更具体地说,是镍层中的一个锂离子,在其第二阳离子配位壳层的锂层中没有与之相关的镍离子。通过锂魔角旋转核磁共振(Li MAS NMR)、X射线衍射和电化学实验,我们确定了脱锂过程中不同晶相的锂谱特征。结果表明单斜相中有快速的锂离子动力学,并表明充电末期附近的六方H3相基本没有锂。